Construction of prediction model of early glottic cancer based on machine learning.

IF 1.2 4区 医学 Q3 OTORHINOLARYNGOLOGY
Acta Oto-Laryngologica Pub Date : 2025-01-01 Epub Date: 2024-12-30 DOI:10.1080/00016489.2024.2430613
Wang Zhao, Jingtai Zhi, Haowei Zheng, Jianqun Du, Mei Wei, Peng Lin, Li Li, Wei Wang
{"title":"Construction of prediction model of early glottic cancer based on machine learning.","authors":"Wang Zhao, Jingtai Zhi, Haowei Zheng, Jianqun Du, Mei Wei, Peng Lin, Li Li, Wei Wang","doi":"10.1080/00016489.2024.2430613","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The early diagnosis of glottic laryngeal cancer is the key to successful treatment, and machine learning (ML) combined with narrow-band imaging (NBI) laryngoscopy provides a new idea for the early diagnosis of glottic laryngeal cancer.</p><p><strong>Objective: </strong>To explore the clinical applicability of the diagnosis of early glottic cancer based on ML combined with NBI.</p><p><strong>Material and methods: </strong>A retrospective study was conducted on 200 patients diagnosed with laryngeal mass, and the general clinical characteristics and pathological results of the patients were collected. Chi-square test and multivariate logistic regression analysis were used to explore clinical and laryngoscopic features that could potentially predict early glottic cancer. Afterward, three classical ML methods, namely random forest (RF), support vector machine (SVM), and decision tree (DT), were combined with NBI endoscopic images to identify risk factors related to glottic cancer and to construct and compare the predictive models.</p><p><strong>Results: </strong>The RF‑based model was found to predict more accurately than other methods and have a significant predominance over others. The accuracy, precision, recall and F1 index, and AUC value of the RF model were 0.96, 0.90, 1.00, 0.95, and 0.97.</p><p><strong>Conclusions and significance: </strong>We developed a prediction model for early glottic cancer using RF, which outperformed other models.</p>","PeriodicalId":6880,"journal":{"name":"Acta Oto-Laryngologica","volume":"145 1","pages":"72-80"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Oto-Laryngologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/00016489.2024.2430613","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"OTORHINOLARYNGOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The early diagnosis of glottic laryngeal cancer is the key to successful treatment, and machine learning (ML) combined with narrow-band imaging (NBI) laryngoscopy provides a new idea for the early diagnosis of glottic laryngeal cancer.

Objective: To explore the clinical applicability of the diagnosis of early glottic cancer based on ML combined with NBI.

Material and methods: A retrospective study was conducted on 200 patients diagnosed with laryngeal mass, and the general clinical characteristics and pathological results of the patients were collected. Chi-square test and multivariate logistic regression analysis were used to explore clinical and laryngoscopic features that could potentially predict early glottic cancer. Afterward, three classical ML methods, namely random forest (RF), support vector machine (SVM), and decision tree (DT), were combined with NBI endoscopic images to identify risk factors related to glottic cancer and to construct and compare the predictive models.

Results: The RF‑based model was found to predict more accurately than other methods and have a significant predominance over others. The accuracy, precision, recall and F1 index, and AUC value of the RF model were 0.96, 0.90, 1.00, 0.95, and 0.97.

Conclusions and significance: We developed a prediction model for early glottic cancer using RF, which outperformed other models.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Oto-Laryngologica
Acta Oto-Laryngologica 医学-耳鼻喉科学
CiteScore
2.50
自引率
0.00%
发文量
99
审稿时长
3-6 weeks
期刊介绍: Acta Oto-Laryngologica is a truly international journal for translational otolaryngology and head- and neck surgery. The journal presents cutting-edge papers on clinical practice, clinical research and basic sciences. Acta also bridges the gap between clinical and basic research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信