Simulation of solar photocatalytic reactor with immobilized photocatalyst for degradation of pharmaceutical pollutants.

IF 5.8 3区 环境科学与生态学 0 ENVIRONMENTAL SCIENCES
Parinaz Deymi, Hajir Karimi, Hakimeh Sharififard, Fatemeh Salehi
{"title":"Simulation of solar photocatalytic reactor with immobilized photocatalyst for degradation of pharmaceutical pollutants.","authors":"Parinaz Deymi, Hajir Karimi, Hakimeh Sharififard, Fatemeh Salehi","doi":"10.1007/s11356-024-35869-0","DOIUrl":null,"url":null,"abstract":"<p><p>This study focuses on the simulation of a solar photocatalytic reactor with linear parabolic reflectors and continuous fluid flow. The simulation approach was initially validated against experimental data reported by Miranda-Garcia et al. Catal Today 151:107-113 (2010), yielding a high degree of accuracy of approximately 0.99%. In this article, the effect of light intensity, Reynolds number, and fluid residence time on the performance of a photoreactor system using titanium dioxide catalyst and ibuprofen pollutant has been investigated. The results show that the intensity of light intensity has an effect of up to 29% on the decomposition of pollutant. With the increase of radiation intensity, the removal of pollutants reached from 85.5% to 99.46%. It has been demonstrated that higher flow turbulence significantly impacts removal efficiency, achieving rates of up to 71%. Moreover, enhancing the fluid's residence time through implementing a recirculating flow within the photoreactor has resulted in a 13% enhancement in removal efficiency. These results can be an important guide for optimizing the design of photocatalytic reactors. By adjusting the examined parameters, it is possible to obtain a higher efficiency in the removal of pollutants, which will be very effective in the scaling and industrial design of solar reactors.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-024-35869-0","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on the simulation of a solar photocatalytic reactor with linear parabolic reflectors and continuous fluid flow. The simulation approach was initially validated against experimental data reported by Miranda-Garcia et al. Catal Today 151:107-113 (2010), yielding a high degree of accuracy of approximately 0.99%. In this article, the effect of light intensity, Reynolds number, and fluid residence time on the performance of a photoreactor system using titanium dioxide catalyst and ibuprofen pollutant has been investigated. The results show that the intensity of light intensity has an effect of up to 29% on the decomposition of pollutant. With the increase of radiation intensity, the removal of pollutants reached from 85.5% to 99.46%. It has been demonstrated that higher flow turbulence significantly impacts removal efficiency, achieving rates of up to 71%. Moreover, enhancing the fluid's residence time through implementing a recirculating flow within the photoreactor has resulted in a 13% enhancement in removal efficiency. These results can be an important guide for optimizing the design of photocatalytic reactors. By adjusting the examined parameters, it is possible to obtain a higher efficiency in the removal of pollutants, which will be very effective in the scaling and industrial design of solar reactors.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
17.20%
发文量
6549
审稿时长
3.8 months
期刊介绍: Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes: - Terrestrial Biology and Ecology - Aquatic Biology and Ecology - Atmospheric Chemistry - Environmental Microbiology/Biobased Energy Sources - Phytoremediation and Ecosystem Restoration - Environmental Analyses and Monitoring - Assessment of Risks and Interactions of Pollutants in the Environment - Conservation Biology and Sustainable Agriculture - Impact of Chemicals/Pollutants on Human and Animal Health It reports from a broad interdisciplinary outlook.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信