Chunxia Chen , Zhan Yang , Jingjing Ma , Weiqi Xie , Zhizeng Wang
{"title":"Recent research progress on the biological functions, synthesis and applications of selenium nanoparticles","authors":"Chunxia Chen , Zhan Yang , Jingjing Ma , Weiqi Xie , Zhizeng Wang","doi":"10.1016/j.jchromb.2024.124448","DOIUrl":null,"url":null,"abstract":"<div><div>Selenium is an essential trace element that is involved in a variety of complex biological processes and has a significant positive effect on the prevention and treatment of cardiovascular disease, inflammatory diseases, and cancer. Selenium in the body is mainly provided by daily meals. However, selenium has two sides, beneficial in moderation and harmful in excess. Selenium nanoparticles (SeNPs), which has better biocompatibility, safety and stability compared with other forms of selenium, is a good choice for selenium supplementing. Current researchers are exploring SeNPs in a variety of ways, including but not limited to antioxidant, antimicrobial, antiviral, inhibition of inflammation, anti-tumor, development of bio-diagnostic reagents, and nano-carrier systems. Also, efforts are being made to synthesize stable and efficient SeNPs for various applications. This study briefly describes how SeNPs are synthesized, summarizes in detail the wide range of uses of SeNPs, and provides an outlook on the future development of it. In addition, combined with the research results of our group, this study discusses the application and biological assays of SeNPs in diagnosis, which will provide inspiration and help for researchers to broaden the application of SeNPs.</div></div>","PeriodicalId":348,"journal":{"name":"Journal of Chromatography B","volume":"1252 ","pages":"Article 124448"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography B","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570023224004574","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Selenium is an essential trace element that is involved in a variety of complex biological processes and has a significant positive effect on the prevention and treatment of cardiovascular disease, inflammatory diseases, and cancer. Selenium in the body is mainly provided by daily meals. However, selenium has two sides, beneficial in moderation and harmful in excess. Selenium nanoparticles (SeNPs), which has better biocompatibility, safety and stability compared with other forms of selenium, is a good choice for selenium supplementing. Current researchers are exploring SeNPs in a variety of ways, including but not limited to antioxidant, antimicrobial, antiviral, inhibition of inflammation, anti-tumor, development of bio-diagnostic reagents, and nano-carrier systems. Also, efforts are being made to synthesize stable and efficient SeNPs for various applications. This study briefly describes how SeNPs are synthesized, summarizes in detail the wide range of uses of SeNPs, and provides an outlook on the future development of it. In addition, combined with the research results of our group, this study discusses the application and biological assays of SeNPs in diagnosis, which will provide inspiration and help for researchers to broaden the application of SeNPs.
期刊介绍:
The Journal of Chromatography B publishes papers on developments in separation science relevant to biology and biomedical research including both fundamental advances and applications. Analytical techniques which may be considered include the various facets of chromatography, electrophoresis and related methods, affinity and immunoaffinity-based methodologies, hyphenated and other multi-dimensional techniques, and microanalytical approaches. The journal also considers articles reporting developments in sample preparation, detection techniques including mass spectrometry, and data handling and analysis.
Developments related to preparative separations for the isolation and purification of components of biological systems may be published, including chromatographic and electrophoretic methods, affinity separations, field flow fractionation and other preparative approaches.
Applications to the analysis of biological systems and samples will be considered when the analytical science contains a significant element of novelty, e.g. a new approach to the separation of a compound, novel combination of analytical techniques, or significantly improved analytical performance.