OsLdh7 Overexpression in Rice Confers Submergence Tolerance by Regulating Key Metabolic Pathways: Anaerobic Glycolysis, Ethanolic Fermentation and Amino Acid Metabolism.

IF 6 1区 生物学 Q1 PLANT SCIENCES
Yajnaseni Chatterjee, Surabhi Tomar, Manjari Mishra, Ashwani Pareek, Sneh Lata Singla-Pareek
{"title":"OsLdh7 Overexpression in Rice Confers Submergence Tolerance by Regulating Key Metabolic Pathways: Anaerobic Glycolysis, Ethanolic Fermentation and Amino Acid Metabolism.","authors":"Yajnaseni Chatterjee, Surabhi Tomar, Manjari Mishra, Ashwani Pareek, Sneh Lata Singla-Pareek","doi":"10.1111/pce.15358","DOIUrl":null,"url":null,"abstract":"<p><p>Lactate dehydrogenase plays a key role in alleviating hypoxia during prolonged submergence. To explore the function of the OsLdh7 gene in enhancing submergence tolerance, we overexpressed this gene in rice (Oryza sativa cv. IR64) and subjected the transgenic lines to complete inundation. The overexpression lines showed enhanced viability, chlorophyll content and photosystem II (PSII) efficiency compared to wild-type (WT) plants under stress and recovery conditions. Additionally, these lines exhibited better starch accumulation and reduced reactive oxygen species (ROS) accumulation. Protein-protein interaction studies revealed that OsLdh7 interacts with OsLos2, OsPdc2, OsAlaAT2 and OsAsp2. Under submergence, enhanced enzyme activities of OsLdh7, OsAsp2 and OsAdh1 led to higher NAD<sup>+</sup> levels, sustaining anaerobic glycolytic flux and increasing pyruvate, a critical carbon source for amino acid metabolism as well as anaerobic fermentation pathways. Elevated l-lactate levels resulted in increased activity of OsPdc2, which eventually led to enhanced ethanol production. The overexpression lines also accumulated higher levels of aspartate, glutamate and alanine, crucial for ROS reduction and energy production during recovery. These findings suggest that OsLdh7 overexpression confers tolerance to submergence stress by regulating the important metabolic pathways- anaerobic glycolysis, ethanolic fermentation and amino acid metabolism in rice.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15358","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Lactate dehydrogenase plays a key role in alleviating hypoxia during prolonged submergence. To explore the function of the OsLdh7 gene in enhancing submergence tolerance, we overexpressed this gene in rice (Oryza sativa cv. IR64) and subjected the transgenic lines to complete inundation. The overexpression lines showed enhanced viability, chlorophyll content and photosystem II (PSII) efficiency compared to wild-type (WT) plants under stress and recovery conditions. Additionally, these lines exhibited better starch accumulation and reduced reactive oxygen species (ROS) accumulation. Protein-protein interaction studies revealed that OsLdh7 interacts with OsLos2, OsPdc2, OsAlaAT2 and OsAsp2. Under submergence, enhanced enzyme activities of OsLdh7, OsAsp2 and OsAdh1 led to higher NAD+ levels, sustaining anaerobic glycolytic flux and increasing pyruvate, a critical carbon source for amino acid metabolism as well as anaerobic fermentation pathways. Elevated l-lactate levels resulted in increased activity of OsPdc2, which eventually led to enhanced ethanol production. The overexpression lines also accumulated higher levels of aspartate, glutamate and alanine, crucial for ROS reduction and energy production during recovery. These findings suggest that OsLdh7 overexpression confers tolerance to submergence stress by regulating the important metabolic pathways- anaerobic glycolysis, ethanolic fermentation and amino acid metabolism in rice.

水稻中OsLdh7的过表达通过调节关键代谢途径:厌氧糖酵解、乙醇发酵和氨基酸代谢来获得耐淹性。
乳酸脱氢酶在缓解长时间水下缺氧中起着关键作用。为了探究OsLdh7基因在提高水稻耐淹性中的作用,我们在水稻中过表达该基因。IR64),并使转基因株系完全淹没。在胁迫和恢复条件下,与野生型植物相比,过表达系表现出更高的活力、叶绿素含量和光系统II (PSII)效率。此外,这些品系表现出更好的淀粉积累和更少的活性氧(ROS)积累。蛋白-蛋白相互作用研究表明,OsLdh7与OsLos2、OsPdc2、OsAlaAT2和OsAsp2相互作用。在水下,OsLdh7、OsAsp2和OsAdh1的酶活性增强,导致NAD+水平升高,维持厌氧糖酵解通量,增加丙酮酸,丙酮酸是氨基酸代谢和厌氧发酵途径的关键碳源。l-乳酸水平升高导致OsPdc2活性增加,最终导致乙醇产量增加。过表达系还积累了较高水平的天冬氨酸、谷氨酸和丙氨酸,这对恢复过程中ROS的减少和能量的产生至关重要。这些发现表明,OsLdh7过表达通过调节水稻中重要的代谢途径——厌氧糖酵解、乙醇发酵和氨基酸代谢,从而赋予水稻对淹没胁迫的耐受性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信