Wenqi Chen , Lijuan Chen , Yongping Wei , Linlin Ruan , Yanhua Fu , Wei Li , Tingting He , Wu Xiao
{"title":"Using the Forel-Ule index (FUI) to track the water quality of subsidence water bodies across the life cycle of coal mining in eastern China","authors":"Wenqi Chen , Lijuan Chen , Yongping Wei , Linlin Ruan , Yanhua Fu , Wei Li , Tingting He , Wu Xiao","doi":"10.1016/j.jenvman.2025.124037","DOIUrl":null,"url":null,"abstract":"<div><div>The water quality and associated ecological risks in subsidence water bodies formed by underground coal mining are an increasing global concern. However, long-term water quality changes in these subsidence water bodies, especially across different spatial regions, remain poorly understood. This paper, by mapping the Forel-Ule index (FUI) a key indicator of water color, using Landsat datasets to reveal the dynamic evolution of water quality in 402 subsidence water bodies in the Huang-Huai-Hai Plain of eastern China from 1990 to 2020, covering their life cycle from formation to extinction. We identified three types of subsidence water bodies, including growing (14.4%), stable (35.1%), and shrinking (50.5%), almost all of which were found to exhibit eutrophic conditions. The findings revealed a blue-shift trend, indicative of improved water quality, was observed in nearly half (45.3%) of the water bodies. During mining, water quality was generally poor with higher average FUI values, but gradually improved at an average rate of −0.09 yr⁻<sup>1</sup>. FUI values experienced a brief period of stability before deteriorating post-mining, with an average rate of 0.05 yr⁻<sup>1</sup>. Our study provides valuable insights into the governance of subsidence water bodies in coal mining areas by revealing large-scale, long-term trends in water quality evolution.</div></div>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"374 ","pages":"Article 124037"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301479725000131","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The water quality and associated ecological risks in subsidence water bodies formed by underground coal mining are an increasing global concern. However, long-term water quality changes in these subsidence water bodies, especially across different spatial regions, remain poorly understood. This paper, by mapping the Forel-Ule index (FUI) a key indicator of water color, using Landsat datasets to reveal the dynamic evolution of water quality in 402 subsidence water bodies in the Huang-Huai-Hai Plain of eastern China from 1990 to 2020, covering their life cycle from formation to extinction. We identified three types of subsidence water bodies, including growing (14.4%), stable (35.1%), and shrinking (50.5%), almost all of which were found to exhibit eutrophic conditions. The findings revealed a blue-shift trend, indicative of improved water quality, was observed in nearly half (45.3%) of the water bodies. During mining, water quality was generally poor with higher average FUI values, but gradually improved at an average rate of −0.09 yr⁻1. FUI values experienced a brief period of stability before deteriorating post-mining, with an average rate of 0.05 yr⁻1. Our study provides valuable insights into the governance of subsidence water bodies in coal mining areas by revealing large-scale, long-term trends in water quality evolution.
期刊介绍:
The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.