Simplified process for preparing native and depolymerized capsular polysaccharides of Streptococcus pneumoniae.

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED
Carbohydrate Polymers Pub Date : 2025-03-01 Epub Date: 2024-11-27 DOI:10.1016/j.carbpol.2024.123070
Yuelong Li, Hantian Yao, Yanli Liu, Xueting Huang, Xin Cao, Jianlong Wang, Zhixin Gao, Haifa Zheng, Jing-Ren Zhang, Jiankai Liu
{"title":"Simplified process for preparing native and depolymerized capsular polysaccharides of Streptococcus pneumoniae.","authors":"Yuelong Li, Hantian Yao, Yanli Liu, Xueting Huang, Xin Cao, Jianlong Wang, Zhixin Gao, Haifa Zheng, Jing-Ren Zhang, Jiankai Liu","doi":"10.1016/j.carbpol.2024.123070","DOIUrl":null,"url":null,"abstract":"<p><p>Streptococcus pneumoniae is a major pathogen of bacterial pneumonia, meningitis, sepsis, and otitis media. The pathogenicity of this bacterium is largely attributed to its polysaccharide capsule, a protective layer around bacterial cell that enables bacteria to resist against host defense. Capsular polysaccharides (CPSs) of S. pneumoniae have been used as antigens to develop a variety of pneumococcal vaccines against invasive pneumococcal disease (IPD). These vaccines have been proven to be effective in reducing the incidence of IPD cases that are caused by vaccine-covered serotypes at the global scale. A crucial step in the manufacture of pneumococcal polysaccharide and conjugate vaccines is to purify native and depolymerized CPSs to meet strict quality standards in purity and structural integrity. The major impurities comprise proteins, nucleic acids and cell wall polysaccharides (CWPS). Traditionally, the removal of impurities to obtain purified native CPSs involves a complex process of purification, after which purified CPSs need to be further size-reduced to obtain depolymerized CPSs by multi-step approaches. In this study, we streamlined the process of CPS purification, which involves firstly ultrafiltration, followed by one-step acid precipitation, and finally diafiltration to obtain pure native CPSs. Furthermore, hydrolysis using trifluoroacetic acid (TFA) was integrated into the process to obtain purified depolymerized CPSs. The native and depolymerized CPSs produced by this optimized process were comparable to the materials obtained by the traditional approaches in purity and structural integrity, which would meet the quality standards of CPSs for vaccine production in the current edition of the European Pharmacopeia.</p>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"351 ","pages":"123070"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.carbpol.2024.123070","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Streptococcus pneumoniae is a major pathogen of bacterial pneumonia, meningitis, sepsis, and otitis media. The pathogenicity of this bacterium is largely attributed to its polysaccharide capsule, a protective layer around bacterial cell that enables bacteria to resist against host defense. Capsular polysaccharides (CPSs) of S. pneumoniae have been used as antigens to develop a variety of pneumococcal vaccines against invasive pneumococcal disease (IPD). These vaccines have been proven to be effective in reducing the incidence of IPD cases that are caused by vaccine-covered serotypes at the global scale. A crucial step in the manufacture of pneumococcal polysaccharide and conjugate vaccines is to purify native and depolymerized CPSs to meet strict quality standards in purity and structural integrity. The major impurities comprise proteins, nucleic acids and cell wall polysaccharides (CWPS). Traditionally, the removal of impurities to obtain purified native CPSs involves a complex process of purification, after which purified CPSs need to be further size-reduced to obtain depolymerized CPSs by multi-step approaches. In this study, we streamlined the process of CPS purification, which involves firstly ultrafiltration, followed by one-step acid precipitation, and finally diafiltration to obtain pure native CPSs. Furthermore, hydrolysis using trifluoroacetic acid (TFA) was integrated into the process to obtain purified depolymerized CPSs. The native and depolymerized CPSs produced by this optimized process were comparable to the materials obtained by the traditional approaches in purity and structural integrity, which would meet the quality standards of CPSs for vaccine production in the current edition of the European Pharmacopeia.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信