Antiferroelectric Order in Nematic Liquids: Flexoelectricity Versus Electrostatics.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Peter Medle Rupnik, Ema Hanžel, Matija Lovšin, Natan Osterman, Calum Jordan Gibb, Richard J Mandle, Nerea Sebastián, Alenka Mertelj
{"title":"Antiferroelectric Order in Nematic Liquids: Flexoelectricity Versus Electrostatics.","authors":"Peter Medle Rupnik, Ema Hanžel, Matija Lovšin, Natan Osterman, Calum Jordan Gibb, Richard J Mandle, Nerea Sebastián, Alenka Mertelj","doi":"10.1002/advs.202414818","DOIUrl":null,"url":null,"abstract":"<p><p>The recent discovery of ferroelectric nematic liquid crystalline phases marks a major breakthrough in soft matter research. An intermediate phase, often observed between the nonpolar and the ferroelectric nematic phase, shows a distinct antiferroelectric response to electric fields. However, its structure and formation mechanisms remain debated, with flexoelectric and electrostatics effects proposed as competing mechanisms. By controlling the magnitude of electrostatic forces through ion addition in two representative ferroelectric nematic materials, it is shown that the primary mechanism for the emergence of antiferroelectric order is the flexoelectric coupling between electric polarization and splay deformation of the nematic director. The addition of ions significantly expands the temperature range over which the antiferroelectric phase is observed, with this range increasing with increasing ion concentration. Polarizing optical microscopy studies and second harmonic generation (SHG) microscopy reveal the splayed structure modulated in 2D, while SHG interferometry confirms its antiferroelectric character. The model previously used to describe pretransitional behavior is extended by incorporating the electrostatic contribution of ions. The model shows qualitative agreement with the experiments, accurately reproducing the phase diagram and temperature-dependent evolution of the modulation period of the observed structure.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2414818"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202414818","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The recent discovery of ferroelectric nematic liquid crystalline phases marks a major breakthrough in soft matter research. An intermediate phase, often observed between the nonpolar and the ferroelectric nematic phase, shows a distinct antiferroelectric response to electric fields. However, its structure and formation mechanisms remain debated, with flexoelectric and electrostatics effects proposed as competing mechanisms. By controlling the magnitude of electrostatic forces through ion addition in two representative ferroelectric nematic materials, it is shown that the primary mechanism for the emergence of antiferroelectric order is the flexoelectric coupling between electric polarization and splay deformation of the nematic director. The addition of ions significantly expands the temperature range over which the antiferroelectric phase is observed, with this range increasing with increasing ion concentration. Polarizing optical microscopy studies and second harmonic generation (SHG) microscopy reveal the splayed structure modulated in 2D, while SHG interferometry confirms its antiferroelectric character. The model previously used to describe pretransitional behavior is extended by incorporating the electrostatic contribution of ions. The model shows qualitative agreement with the experiments, accurately reproducing the phase diagram and temperature-dependent evolution of the modulation period of the observed structure.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信