In-cell NMR reveals metabolic adaptations in central carbon pathways driving antibiotic tolerance in Salmonella Typhimurium.

IF 2.7 3区 化学 Q2 CHEMISTRY, ANALYTICAL
Alexandra L N Zahid, Ke-Chuan Wang, Line Elnif Thomsen, Sebastian Meier, Pernille Rose Jensen
{"title":"In-cell NMR reveals metabolic adaptations in central carbon pathways driving antibiotic tolerance in <i>Salmonella</i> Typhimurium.","authors":"Alexandra L N Zahid, Ke-Chuan Wang, Line Elnif Thomsen, Sebastian Meier, Pernille Rose Jensen","doi":"10.1039/d4ay02023e","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotic tolerance presents a significant challenge in eradicating bacterial infections, as tolerant strains can survive antibiotic treatment, contributing to the recurrence of infections and the development of resistance. However, unlike antibiotic resistance, tolerance is not detectable by standard susceptibility assays such as minimal inhibitory concentration (MIC) tests. Consequently, antibiotic tolerance often goes unnoticed in clinical settings. Bacterial metabolism is closely linked to antibiotic efficacy, and thus presents as a potential target for novel diagnostic methods. Recent advancements in nuclear magnetic resonance (NMR) spectroscopy, including dynamic nuclear polarization (DNP-NMR), enable a non-invasive real-time approach to analyzing bacterial metabolism. In this study, we applied both <sup>1</sup>H and in-cell <sup>13</sup>C NMR spectroscopy to investigate metabolic adaptations in a tolerance-evolved <i>Salmonella</i> Typhimurium strain, C10, developed through ten cycles of ampicillin treatment. Our results demonstrated that despite similar MICs and growth rates, the C10 strain exhibited a 25-fold increase in tolerance compared to the wild-type, while exhibiting lower metabolic activity. Under ampicillin stress, however, the C10 strain maintained higher metabolic activity and demonstrated greater resilience in glucose consumption and metabolite production relative to the wild-type. Using DNP-NMR, rapid metabolic shifts in the C10 strain were identified within 10 minutes of exposure to high concentrations of ampicillin, characterized by accumulation of key metabolites such as pyruvate and acetate. Overall, our findings underscore the potential of real-time NMR-based analyses to provide deeper insights into antibiotic tolerance and distinguish between susceptible and tolerant bacterial strains.</p>","PeriodicalId":64,"journal":{"name":"Analytical Methods","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ay02023e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Antibiotic tolerance presents a significant challenge in eradicating bacterial infections, as tolerant strains can survive antibiotic treatment, contributing to the recurrence of infections and the development of resistance. However, unlike antibiotic resistance, tolerance is not detectable by standard susceptibility assays such as minimal inhibitory concentration (MIC) tests. Consequently, antibiotic tolerance often goes unnoticed in clinical settings. Bacterial metabolism is closely linked to antibiotic efficacy, and thus presents as a potential target for novel diagnostic methods. Recent advancements in nuclear magnetic resonance (NMR) spectroscopy, including dynamic nuclear polarization (DNP-NMR), enable a non-invasive real-time approach to analyzing bacterial metabolism. In this study, we applied both 1H and in-cell 13C NMR spectroscopy to investigate metabolic adaptations in a tolerance-evolved Salmonella Typhimurium strain, C10, developed through ten cycles of ampicillin treatment. Our results demonstrated that despite similar MICs and growth rates, the C10 strain exhibited a 25-fold increase in tolerance compared to the wild-type, while exhibiting lower metabolic activity. Under ampicillin stress, however, the C10 strain maintained higher metabolic activity and demonstrated greater resilience in glucose consumption and metabolite production relative to the wild-type. Using DNP-NMR, rapid metabolic shifts in the C10 strain were identified within 10 minutes of exposure to high concentrations of ampicillin, characterized by accumulation of key metabolites such as pyruvate and acetate. Overall, our findings underscore the potential of real-time NMR-based analyses to provide deeper insights into antibiotic tolerance and distinguish between susceptible and tolerant bacterial strains.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Methods
Analytical Methods CHEMISTRY, ANALYTICAL-FOOD SCIENCE & TECHNOLOGY
CiteScore
5.10
自引率
3.20%
发文量
569
审稿时长
1.8 months
期刊介绍: Early applied demonstrations of new analytical methods with clear societal impact
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信