Quantitative Analysis of Nonhistone Lysine Methylation Sites and Lysine Demethylases in Breast Cancer Cell Lines.

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Christine A Berryhill, Taylor N Evans, Emma H Doud, Whitney R Smith-Kinnaman, Jocelyne N Hanquier, Amber L Mosley, Evan M Cornett
{"title":"Quantitative Analysis of Nonhistone Lysine Methylation Sites and Lysine Demethylases in Breast Cancer Cell Lines.","authors":"Christine A Berryhill, Taylor N Evans, Emma H Doud, Whitney R Smith-Kinnaman, Jocelyne N Hanquier, Amber L Mosley, Evan M Cornett","doi":"10.1021/acs.jproteome.4c00685","DOIUrl":null,"url":null,"abstract":"<p><p>Growing evidence shows that lysine methylation is a widespread protein post-translational modification (PTM) that regulates protein function on histone and nonhistone proteins. Numerous studies have demonstrated that the dysregulation of lysine methylation mediators contributes to cancer growth and chemotherapeutic resistance. While changes in histone methylation are well-documented with extensive analytical techniques available, there is a lack of high-throughput methods to reproducibly quantify changes in the abundances of the mediators of lysine methylation and nonhistone lysine methylation (Kme) simultaneously across multiple samples. Recent studies by our group and others have demonstrated that antibody enrichment is not required to detect lysine methylation, prompting us to investigate the use of tandem mass tag (TMT) labeling for global Kme quantification without antibody enrichment in four different breast cancer cell lines (MCF-7, MDA-MB-231, HCC1806, and MCF10A). To improve the quantification of KDMs, we incorporated a lysine demethylase (KDM) isobaric trigger channel, which enabled 96% of all KDMs to be quantified while simultaneously quantifying 326 Kme sites. Overall, 142 differentially abundant Kme sites and eight differentially abundant KDMs were identified among the four cell lines, revealing cell line-specific patterning.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00685","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Growing evidence shows that lysine methylation is a widespread protein post-translational modification (PTM) that regulates protein function on histone and nonhistone proteins. Numerous studies have demonstrated that the dysregulation of lysine methylation mediators contributes to cancer growth and chemotherapeutic resistance. While changes in histone methylation are well-documented with extensive analytical techniques available, there is a lack of high-throughput methods to reproducibly quantify changes in the abundances of the mediators of lysine methylation and nonhistone lysine methylation (Kme) simultaneously across multiple samples. Recent studies by our group and others have demonstrated that antibody enrichment is not required to detect lysine methylation, prompting us to investigate the use of tandem mass tag (TMT) labeling for global Kme quantification without antibody enrichment in four different breast cancer cell lines (MCF-7, MDA-MB-231, HCC1806, and MCF10A). To improve the quantification of KDMs, we incorporated a lysine demethylase (KDM) isobaric trigger channel, which enabled 96% of all KDMs to be quantified while simultaneously quantifying 326 Kme sites. Overall, 142 differentially abundant Kme sites and eight differentially abundant KDMs were identified among the four cell lines, revealing cell line-specific patterning.

乳腺癌细胞系非组蛋白赖氨酸甲基化位点和赖氨酸去甲基化酶的定量分析。
越来越多的证据表明,赖氨酸甲基化是一种广泛存在的蛋白质翻译后修饰(PTM),可调节组蛋白和非组蛋白上的蛋白质功能。大量研究表明,赖氨酸甲基化介质的失调有助于癌症的生长和化疗耐药。虽然组蛋白甲基化的变化已被广泛的分析技术充分记录,但缺乏高通量的方法来重现量化多个样品中赖氨酸甲基化和非组蛋白赖氨酸甲基化(Kme)介质丰度的变化。我们和其他人最近的研究表明,检测赖氨酸甲基化不需要抗体富集,这促使我们在四种不同的乳腺癌细胞系(MCF-7、MDA-MB-231、HCC1806和MCF10A)中研究使用串联质量标签(TMT)标记进行全局Kme定量,而不需要抗体富集。为了提高KDM的定量,我们引入了赖氨酸去甲基化酶(KDM)等压触发通道,使96%的KDM能够定量,同时定量326个Kme位点。总体而言,在四种细胞系中鉴定出142个差异丰富的Kme位点和8个差异丰富的kdm,揭示了细胞系特异性模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Proteome Research
Journal of Proteome Research 生物-生化研究方法
CiteScore
9.00
自引率
4.50%
发文量
251
审稿时长
3 months
期刊介绍: Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信