Antonio Morales-Esteban, Rudolf Scitovski, Kristian Sabo, Danijel Grahovac, Šime Ungar
{"title":"Earthquake analysis of clusters of the most appropriate partition","authors":"Antonio Morales-Esteban, Rudolf Scitovski, Kristian Sabo, Danijel Grahovac, Šime Ungar","doi":"10.1007/s10950-024-10252-1","DOIUrl":null,"url":null,"abstract":"<div><p>In our paper, we propose the most appropriate partition to depict the seismogenic zones of an active seismic region. To do so, the earthquake data considered are the location and magnitude. To determine three ellipsoidal layers of shallow, intermediate, and deep earthquakes, we switch from the geoid to a solid ball model and solve an appropriate multiple concentric sphere detection problem. Considering the Iberian Peninsula region, by using the Mahalanobis incremental algorithm with the help of the Mahalanobis area index and Mahalanobis minimal distance index, we first determine the most appropriate partition of earthquake positions, consisting of as compact and mutually separated clusters as possible. The result shows four clusters representing the main seismogenic zones of that area. In each of these clusters, we analyze some important earthquake properties, notably the hypocentral depths—a less researched property. Furthermore, we show how to generate a smooth surface best fitting the hypocenters in the considered area, and since the data contain many outliers, for that purpose we use the moving least absolute deviation method. In addition, for each cluster of the most appropriate partition, we ponder the question of estimating the Gutenberg–Richter’s <i>b</i>-value. To avoid the known drawbacks mentioned in the literature for estimating the <i>b</i>-parameter in the Gutenberg–Richter law, we propose the estimation of parameters <i>a</i> and <i>b</i> by using the least absolute deviation method. We also found that the hypocenters are notably deeper in the southwestern Iberian Peninsula and the Azores-Gibraltar fault zone, where the largest earthquakes take place. Finally, one should emphasize that the hypocenters study proposed in this research demonstrated that the most hazardous zone encompasses the most deep focuses. The <span>CPU</span>-time required for all calculations has been moderate. The methodology, used in this work, could easily be applied to other seismological areas, for which we list our freely available <i>Mathematica</i>-modules.</p></div>","PeriodicalId":16994,"journal":{"name":"Journal of Seismology","volume":"28 6","pages":"1373 - 1388"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Seismology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10950-024-10252-1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In our paper, we propose the most appropriate partition to depict the seismogenic zones of an active seismic region. To do so, the earthquake data considered are the location and magnitude. To determine three ellipsoidal layers of shallow, intermediate, and deep earthquakes, we switch from the geoid to a solid ball model and solve an appropriate multiple concentric sphere detection problem. Considering the Iberian Peninsula region, by using the Mahalanobis incremental algorithm with the help of the Mahalanobis area index and Mahalanobis minimal distance index, we first determine the most appropriate partition of earthquake positions, consisting of as compact and mutually separated clusters as possible. The result shows four clusters representing the main seismogenic zones of that area. In each of these clusters, we analyze some important earthquake properties, notably the hypocentral depths—a less researched property. Furthermore, we show how to generate a smooth surface best fitting the hypocenters in the considered area, and since the data contain many outliers, for that purpose we use the moving least absolute deviation method. In addition, for each cluster of the most appropriate partition, we ponder the question of estimating the Gutenberg–Richter’s b-value. To avoid the known drawbacks mentioned in the literature for estimating the b-parameter in the Gutenberg–Richter law, we propose the estimation of parameters a and b by using the least absolute deviation method. We also found that the hypocenters are notably deeper in the southwestern Iberian Peninsula and the Azores-Gibraltar fault zone, where the largest earthquakes take place. Finally, one should emphasize that the hypocenters study proposed in this research demonstrated that the most hazardous zone encompasses the most deep focuses. The CPU-time required for all calculations has been moderate. The methodology, used in this work, could easily be applied to other seismological areas, for which we list our freely available Mathematica-modules.
期刊介绍:
Journal of Seismology is an international journal specialising in all observational and theoretical aspects related to earthquake occurrence.
Research topics may cover: seismotectonics, seismicity, historical seismicity, seismic source physics, strong ground motion studies, seismic hazard or risk, engineering seismology, physics of fault systems, triggered and induced seismicity, mining seismology, volcano seismology, earthquake prediction, structural investigations ranging from local to regional and global studies with a particular focus on passive experiments.