Adjusting *CO adsorption configuration over tandem trimetallic AuAgCu heterojunction boosts CO2 electroreduction to ethanol via asymmetric C-C coupling

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yongxia Shi  (, ), Junjun Li  (, ), Zhiwen Min  (, ), Xinyi Wang  (, ), Man Hou  (, ), Hao Ma  (, ), Zechao Zhuang  (, ), Yuchen Qin  (, ), Yuanmiao Sun  (, ), Dingsheng Wang  (, ), Zhicheng Zhang  (, )
{"title":"Adjusting *CO adsorption configuration over tandem trimetallic AuAgCu heterojunction boosts CO2 electroreduction to ethanol via asymmetric C-C coupling","authors":"Yongxia Shi \n (,&nbsp;),&nbsp;Junjun Li \n (,&nbsp;),&nbsp;Zhiwen Min \n (,&nbsp;),&nbsp;Xinyi Wang \n (,&nbsp;),&nbsp;Man Hou \n (,&nbsp;),&nbsp;Hao Ma \n (,&nbsp;),&nbsp;Zechao Zhuang \n (,&nbsp;),&nbsp;Yuchen Qin \n (,&nbsp;),&nbsp;Yuanmiao Sun \n (,&nbsp;),&nbsp;Dingsheng Wang \n (,&nbsp;),&nbsp;Zhicheng Zhang \n (,&nbsp;)","doi":"10.1007/s40843-024-3162-2","DOIUrl":null,"url":null,"abstract":"<div><p>Rationally modulating the adsorption configuration of the key *CO intermediate could facilitate carbon-carbon (C-C) coupling to generate multi-carbon products in the electrochemical CO<sub>2</sub> reduction reaction. In this work, theoretical calculations reveal that C-C coupling via atop-adsorbed *CHO and hollow-adsorbed *CO over Cu sites is an energetically favorable pathway. As a proof of concept, a tandem trimetallic AuAgCu heterojunction (Au@Ag/Cu) was prepared, where the atop-adsorbed *CO over Au@Ag sites could migrate to Cu sites with hollow adsorption configuration, and then the asymmetric C-C coupling via transferred hollow-adsorbed *CO and existed atop-adsorbed *CHO over Cu sites facilitates the formation of the ethanol product, exhibiting a maximum Faraday efficiency of 65.9% at a low potential of −0.3 V vs. reverse hydrogen electrode. Our work provides new insights into the intrinsic understanding of tandem catalysis by regulating adsorption configuration of the intermediate products.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 1","pages":"173 - 179"},"PeriodicalIF":6.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3162-2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rationally modulating the adsorption configuration of the key *CO intermediate could facilitate carbon-carbon (C-C) coupling to generate multi-carbon products in the electrochemical CO2 reduction reaction. In this work, theoretical calculations reveal that C-C coupling via atop-adsorbed *CHO and hollow-adsorbed *CO over Cu sites is an energetically favorable pathway. As a proof of concept, a tandem trimetallic AuAgCu heterojunction (Au@Ag/Cu) was prepared, where the atop-adsorbed *CO over Au@Ag sites could migrate to Cu sites with hollow adsorption configuration, and then the asymmetric C-C coupling via transferred hollow-adsorbed *CO and existed atop-adsorbed *CHO over Cu sites facilitates the formation of the ethanol product, exhibiting a maximum Faraday efficiency of 65.9% at a low potential of −0.3 V vs. reverse hydrogen electrode. Our work provides new insights into the intrinsic understanding of tandem catalysis by regulating adsorption configuration of the intermediate products.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信