Kinematic rupture modeling of broadband ground motion from the 2022 MS6.9 Menyuan earthquake

IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Mengtao Wu, Jun Yang
{"title":"Kinematic rupture modeling of broadband ground motion from the 2022 MS6.9 Menyuan earthquake","authors":"Mengtao Wu,&nbsp;Jun Yang","doi":"10.1007/s10950-024-10247-y","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a novel kinematic rupture modeling procedure for synthesizing broadband ground motions derived from the frequency-wavenumber integration algorithm. This procedure addresses two key issues in characterizing the rupture processes relevant to broadband seismic radiation: an accurate Green's function and a well-constrained kinematic source model. For the first issue, we derive the theoretical Green's function based on an improved dynamic stiffness matrix approach that effectively handles wave propagation in a 1D crustal velocity structure across a broad frequency band. For the second issue, we generate the hybrid source model that combines asperity slip and random slip over the fault plane to effectively implement constraints on the radiated energy during the whole rupture process. The accuracy and effectiveness of the proposed methodology are verified by comparing with the surface acceleration traces and Fourier spectra calculated by spectral element method. With the hybrid source model and crustal velocity structure applicable to the target area, the broadband (0–10 Hz) ground motion of the 2022 <i>M</i><sub>S</sub>6.9 Menyuan earthquake is synthesized. The amplitude, duration, and frequency content of the synthetic motions are systematically compared with those of the available observed records and ground motion attenuation relationships, as well as the spatial distribution characteristics of the near-field ground motions from the earthquake scenarios are presented. In conclusion, the case study of the Menyuan <i>M</i><sub>S</sub>6.9 earthquake demonstrates that the presented modeling procedure can estimate broadband ground motions rapidly and reliably from a physics-based kinematic rupture perspective.</p></div>","PeriodicalId":16994,"journal":{"name":"Journal of Seismology","volume":"28 6","pages":"1537 - 1563"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10950-024-10247-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Seismology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10950-024-10247-y","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel kinematic rupture modeling procedure for synthesizing broadband ground motions derived from the frequency-wavenumber integration algorithm. This procedure addresses two key issues in characterizing the rupture processes relevant to broadband seismic radiation: an accurate Green's function and a well-constrained kinematic source model. For the first issue, we derive the theoretical Green's function based on an improved dynamic stiffness matrix approach that effectively handles wave propagation in a 1D crustal velocity structure across a broad frequency band. For the second issue, we generate the hybrid source model that combines asperity slip and random slip over the fault plane to effectively implement constraints on the radiated energy during the whole rupture process. The accuracy and effectiveness of the proposed methodology are verified by comparing with the surface acceleration traces and Fourier spectra calculated by spectral element method. With the hybrid source model and crustal velocity structure applicable to the target area, the broadband (0–10 Hz) ground motion of the 2022 MS6.9 Menyuan earthquake is synthesized. The amplitude, duration, and frequency content of the synthetic motions are systematically compared with those of the available observed records and ground motion attenuation relationships, as well as the spatial distribution characteristics of the near-field ground motions from the earthquake scenarios are presented. In conclusion, the case study of the Menyuan MS6.9 earthquake demonstrates that the presented modeling procedure can estimate broadband ground motions rapidly and reliably from a physics-based kinematic rupture perspective.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Seismology
Journal of Seismology 地学-地球化学与地球物理
CiteScore
3.30
自引率
6.20%
发文量
67
审稿时长
3 months
期刊介绍: Journal of Seismology is an international journal specialising in all observational and theoretical aspects related to earthquake occurrence. Research topics may cover: seismotectonics, seismicity, historical seismicity, seismic source physics, strong ground motion studies, seismic hazard or risk, engineering seismology, physics of fault systems, triggered and induced seismicity, mining seismology, volcano seismology, earthquake prediction, structural investigations ranging from local to regional and global studies with a particular focus on passive experiments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信