Meenakshi, R Kapoor, S Dash, R Bansal, A Vij, H K Chourasiya, N Kumar, Ramovatar, S Kumar
{"title":"Tuning the structural, magnetic and optical properties of EuCrO3 orthochromites through Dy3+ substitution","authors":"Meenakshi, R Kapoor, S Dash, R Bansal, A Vij, H K Chourasiya, N Kumar, Ramovatar, S Kumar","doi":"10.1007/s12034-024-03376-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, EuCrO<sub>3</sub> (ECO) and Eu<sub>0.9</sub>Dy<sub>0.10</sub>CrO<sub>3</sub> (EDCO) rare-earth orthochromite compositions were synthesized through the traditional solid-state reaction technique. A comprehensive investigation was conducted to analyse the effect of the substitution of 10 wt% Dy<sup>3+</sup> ions on the structural, optical and magnetic properties of EuCrO<sub>3</sub>. The X-ray diffraction results along with Rietveld refinement confirm the monophasic nature with an orthorhombic distorted perovskite structure for both compositions. Field emission scanning electron microscopy reveals polycrystalline microstructures with average grain sizes ranging from 269 to 327 nm for both compounds. The optical bandgap is evaluated by Tauc’s relation and is observed to slightly increase from 2.24 to 2.33 eV with Dy<sup>3+</sup> ions substitution. Optical parameters, including skin depth, extinction coefficient, refractive index and optical conductivity are determined and their variations with Dy substitution are analysed. Temperature-dependent magnetic analysis reveals a Néel temperature (<i>T</i><sub>N</sub>) of 177 K in EDCO composition, lower than that of pristine EuCrO<sub>3</sub> (<i>T</i><sub>N</sub> ~181 K). The magnetocaloric effect of the EDCO compound demonstrates a magnetic entropy change (Δ<i>S</i>) and relative cooling power of –0.27 J kg<sup>−1</sup> K and 4.4 J kg<sup>−1</sup>, respectively, near <i>T</i><sub>N</sub> under the application of 7 Tesla field. This study highlights the tunability of EuCrO<sub>3</sub> properties through Dy ion substitution for customized applications.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12034-024-03376-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, EuCrO3 (ECO) and Eu0.9Dy0.10CrO3 (EDCO) rare-earth orthochromite compositions were synthesized through the traditional solid-state reaction technique. A comprehensive investigation was conducted to analyse the effect of the substitution of 10 wt% Dy3+ ions on the structural, optical and magnetic properties of EuCrO3. The X-ray diffraction results along with Rietveld refinement confirm the monophasic nature with an orthorhombic distorted perovskite structure for both compositions. Field emission scanning electron microscopy reveals polycrystalline microstructures with average grain sizes ranging from 269 to 327 nm for both compounds. The optical bandgap is evaluated by Tauc’s relation and is observed to slightly increase from 2.24 to 2.33 eV with Dy3+ ions substitution. Optical parameters, including skin depth, extinction coefficient, refractive index and optical conductivity are determined and their variations with Dy substitution are analysed. Temperature-dependent magnetic analysis reveals a Néel temperature (TN) of 177 K in EDCO composition, lower than that of pristine EuCrO3 (TN ~181 K). The magnetocaloric effect of the EDCO compound demonstrates a magnetic entropy change (ΔS) and relative cooling power of –0.27 J kg−1 K and 4.4 J kg−1, respectively, near TN under the application of 7 Tesla field. This study highlights the tunability of EuCrO3 properties through Dy ion substitution for customized applications.
期刊介绍:
The Bulletin of Materials Science is a bi-monthly journal being published by the Indian Academy of Sciences in collaboration with the Materials Research Society of India and the Indian National Science Academy. The journal publishes original research articles, review articles and rapid communications in all areas of materials science. The journal also publishes from time to time important Conference Symposia/ Proceedings which are of interest to materials scientists. It has an International Advisory Editorial Board and an Editorial Committee. The Bulletin accords high importance to the quality of articles published and to keep at a minimum the processing time of papers submitted for publication.