Hollow MnO2-based multifunctional nanoplatform for enhanced tumor chemodynamic therapy

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Dejie Ge  (, ), Debao Ren  (, ), Yamin Duan  (, ), Xuan Luo  (, ), Shuailin He  (, ), Wenjun Qin  (, ), Fei Wang  (, ), Wen Yin  (, ), Lixin Ma  (, ), Yong Yang  (, ), Cheng Zhang  (, )
{"title":"Hollow MnO2-based multifunctional nanoplatform for enhanced tumor chemodynamic therapy","authors":"Dejie Ge \n (,&nbsp;),&nbsp;Debao Ren \n (,&nbsp;),&nbsp;Yamin Duan \n (,&nbsp;),&nbsp;Xuan Luo \n (,&nbsp;),&nbsp;Shuailin He \n (,&nbsp;),&nbsp;Wenjun Qin \n (,&nbsp;),&nbsp;Fei Wang \n (,&nbsp;),&nbsp;Wen Yin \n (,&nbsp;),&nbsp;Lixin Ma \n (,&nbsp;),&nbsp;Yong Yang \n (,&nbsp;),&nbsp;Cheng Zhang \n (,&nbsp;)","doi":"10.1007/s40843-024-3177-5","DOIUrl":null,"url":null,"abstract":"<div><p>The inherent tumor microenvironment (TME) of hypoxia and high glutathione (GSH) hinders the production of reactive oxygen species (ROS), yet which are crucial roles to make the oxygen-independent chemodynamic therapy (CDT) outstanding. Herein, we constructed hyaluronic acid (HA)-modified and peroxymonosulfate (PMS)-loaded hollow manganese dioxide (HMn) nanoparticles for not only TME-response drug release but also the distinct ROS donors to strengthen CDT. Upon enriched in the tumor site, the prepared nanotheranostic agent (HA@HMn/PMS) depleted local GSH to reduce MnO<sub>2</sub> to Mn<sup>2+</sup>, followed by generating •OH and •SO<sub>4</sub><sup>−</sup> through Fenton-like reaction and activation of PMS, respectively. The bring in of •SO<sub>4</sub><sup>−</sup>, a rare radical possessing exceptional oxidizing ability and oxygen-independent property, breaks the limitations of traditional ROS and causes serious damage to tumor cells. In a xenograft mouse tumor model, detailed studies demonstrated that HA@HMn/PMS can significantly inhibit tumor growth. This work inspires the enormous potential of CDT in investigating the application of multifunctional nanosystems by combining the consumption of GSH and the synergistic effect of multiple radicals in oncotherapy.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 1","pages":"292 - 302"},"PeriodicalIF":6.8000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3177-5","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The inherent tumor microenvironment (TME) of hypoxia and high glutathione (GSH) hinders the production of reactive oxygen species (ROS), yet which are crucial roles to make the oxygen-independent chemodynamic therapy (CDT) outstanding. Herein, we constructed hyaluronic acid (HA)-modified and peroxymonosulfate (PMS)-loaded hollow manganese dioxide (HMn) nanoparticles for not only TME-response drug release but also the distinct ROS donors to strengthen CDT. Upon enriched in the tumor site, the prepared nanotheranostic agent (HA@HMn/PMS) depleted local GSH to reduce MnO2 to Mn2+, followed by generating •OH and •SO4 through Fenton-like reaction and activation of PMS, respectively. The bring in of •SO4, a rare radical possessing exceptional oxidizing ability and oxygen-independent property, breaks the limitations of traditional ROS and causes serious damage to tumor cells. In a xenograft mouse tumor model, detailed studies demonstrated that HA@HMn/PMS can significantly inhibit tumor growth. This work inspires the enormous potential of CDT in investigating the application of multifunctional nanosystems by combining the consumption of GSH and the synergistic effect of multiple radicals in oncotherapy.

增强肿瘤化疗动力学治疗的中空二氧化锰多功能纳米平台
低氧和高谷胱甘肽(GSH)的固有肿瘤微环境(TME)阻碍了活性氧(ROS)的产生,而活性氧是使氧非依赖性化学动力学治疗(CDT)突出的关键。在此,我们构建了透明质酸(HA)修饰和过氧单硫酸盐(PMS)负载的中空二氧化锰(HMn)纳米颗粒,不仅用于tme反应药物释放,而且还用于不同的ROS供体,以增强CDT。在肿瘤部位富集后,制备的纳米治疗剂(HA@HMn/PMS)通过消耗局部GSH将MnO2还原为Mn2+,然后通过fenton样反应和PMS活化分别生成•OH和•SO4−。•SO4−是一种罕见的自由基,具有优异的氧化能力和不依赖氧的特性,它的引入打破了传统ROS的局限性,对肿瘤细胞造成了严重的损伤。在异种移植小鼠肿瘤模型中,详细研究表明HA@HMn/PMS能显著抑制肿瘤生长。这项工作激发了CDT在研究多功能纳米系统应用方面的巨大潜力,通过结合GSH的消耗和多种自由基在肿瘤治疗中的协同作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信