Understanding Microemulsions and Nanoemulsions in (Trans)Dermal Delivery

IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Jasmine Musakhanian, David W. Osborne
{"title":"Understanding Microemulsions and Nanoemulsions in (Trans)Dermal Delivery","authors":"Jasmine Musakhanian,&nbsp;David W. Osborne","doi":"10.1208/s12249-024-02997-2","DOIUrl":null,"url":null,"abstract":"<div><p>Continuously explored in pharmaceuticals, microemulsions and nanoemulsions offer drug delivery opportunities that are too significant to ignore, namely safe delivery of clinically relevant drug doses across biological membranes. Their effectiveness as drug vehicles in mucosal and (trans)dermal delivery is evident from the volume of published literature. Commonly, their ability to enhance skin permeation is attributed to dispersion size, a characteristic closely related to solubilization capacity. However, the literature falls short on distinctions between microemulsions and nanoemulsions for definitions, behavior, or specific differences in their mechanisms of action in (trans)dermal delivery. The focus is typically on surfactant/cosurfactant ratio and droplet size but the role of mesostructures or the effect of cosolvent (C<sub>sol</sub>), oil (O) or water (W) on permeation profile remain poorly explained. Towards a deeper understanding of these vehicles in (trans)dermal drug delivery, this review begins with their conceptual and practical distinctions before delving into the published works for less obvious but potentially important underlying mechanisms; notably composition and the competitive positioning of system constituents in the resulting microstructures and subsequent effect(s) these may have on skin structures and drug permeability. For practical purposes, this review focuses on formulation systems based on ternary diagrams with commonly accepted non-ionic surfactants, cosurfactants, cosolvents, and oils used in pharmaceutical applications.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1208/s12249-024-02997-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-024-02997-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Continuously explored in pharmaceuticals, microemulsions and nanoemulsions offer drug delivery opportunities that are too significant to ignore, namely safe delivery of clinically relevant drug doses across biological membranes. Their effectiveness as drug vehicles in mucosal and (trans)dermal delivery is evident from the volume of published literature. Commonly, their ability to enhance skin permeation is attributed to dispersion size, a characteristic closely related to solubilization capacity. However, the literature falls short on distinctions between microemulsions and nanoemulsions for definitions, behavior, or specific differences in their mechanisms of action in (trans)dermal delivery. The focus is typically on surfactant/cosurfactant ratio and droplet size but the role of mesostructures or the effect of cosolvent (Csol), oil (O) or water (W) on permeation profile remain poorly explained. Towards a deeper understanding of these vehicles in (trans)dermal drug delivery, this review begins with their conceptual and practical distinctions before delving into the published works for less obvious but potentially important underlying mechanisms; notably composition and the competitive positioning of system constituents in the resulting microstructures and subsequent effect(s) these may have on skin structures and drug permeability. For practical purposes, this review focuses on formulation systems based on ternary diagrams with commonly accepted non-ionic surfactants, cosurfactants, cosolvents, and oils used in pharmaceutical applications.

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
AAPS PharmSciTech
AAPS PharmSciTech 医学-药学
CiteScore
6.80
自引率
3.00%
发文量
264
审稿时长
2.4 months
期刊介绍: AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信