{"title":"Thermal, chemical, and rheological characterization of bio-asphalt prepared using sugarcane molasses","authors":"Dheeraj Mehta, Nikhil Saboo","doi":"10.1617/s11527-024-02549-x","DOIUrl":null,"url":null,"abstract":"<div><p>Asphalt binder replacement with bio-materials (bio-asphalt) has recently gained significant attention. Bio-asphalt serves as a sustainable avenue and is currently being researched for reducing the dependency on asphalt binder. This work is aimed towards understanding the thermal, morphological, chemical, and rheological behaviour of asphalt binder partially replaced with sugarcane molasses (SM). The optimum dosage for partial replacement was arrived as 30% (by weight of asphalt binder). Two base binders (VG 40 and VG 30) along with five SM sources were used to prepare the bio-asphalts. The thermal stability evaluated using thermogravimetric analysis revealed that bio-asphalts have acceptable thermal resistance withstanding temperature up to 200 °C. Fluorescence microscopy exhibited that SM particles were uniformly dispersed in the base binder, rendering a stable structure. Through chemical analysis (asphaltene–maltene ratio) it was found that the asphaltene percentage marginally increases after the addition of SM. Rheological characterization comprised of multiple stress creep recovery and linear amplitude sweep tests. Test results indicated that incorporation of SM resulted in lower non-recoverable creep compliance (<i>J</i><sub>nr</sub>), decreased permanent strain, and similar/slightly higher percent recovery (% R). The fatigue life of bio-asphalts improved due to the formulation of compounds capable of imparting elasticity to the bio-asphalts.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1617/s11527-024-02549-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-024-02549-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Asphalt binder replacement with bio-materials (bio-asphalt) has recently gained significant attention. Bio-asphalt serves as a sustainable avenue and is currently being researched for reducing the dependency on asphalt binder. This work is aimed towards understanding the thermal, morphological, chemical, and rheological behaviour of asphalt binder partially replaced with sugarcane molasses (SM). The optimum dosage for partial replacement was arrived as 30% (by weight of asphalt binder). Two base binders (VG 40 and VG 30) along with five SM sources were used to prepare the bio-asphalts. The thermal stability evaluated using thermogravimetric analysis revealed that bio-asphalts have acceptable thermal resistance withstanding temperature up to 200 °C. Fluorescence microscopy exhibited that SM particles were uniformly dispersed in the base binder, rendering a stable structure. Through chemical analysis (asphaltene–maltene ratio) it was found that the asphaltene percentage marginally increases after the addition of SM. Rheological characterization comprised of multiple stress creep recovery and linear amplitude sweep tests. Test results indicated that incorporation of SM resulted in lower non-recoverable creep compliance (Jnr), decreased permanent strain, and similar/slightly higher percent recovery (% R). The fatigue life of bio-asphalts improved due to the formulation of compounds capable of imparting elasticity to the bio-asphalts.
期刊介绍:
Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.