{"title":"Efficient extraction and detection of cinnamaldehyde and cinnamic acid in cinnamon twig","authors":"Zhen Zhou, Shengkai Liu, Liying Cui, Zhongkai Liu, Xiaoyu Li, Zhiguo Liu, Yujie Fu","doi":"10.1007/s11694-024-02994-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study explored the ultrasonic-microwave synergistic extraction technique for obtaining cinnamaldehyde and cinnamic acid from cinnamon twigs, and determined the most favorable extraction conditions. The optimization of extraction parameters, including extraction time, ethanol concentration, liquid-to-solid ratio, and microwave power, was achieved through single-factor experiments and the response surface method. The results of the significance analysis indicated that ethanol concentration and extraction power were the two primary factors affecting the extraction rates of cinnamaldehyde and cinnamic acid. Under the optimal conditions—600 W microwave power, 75% ethanol concentration, a liquid-to-solid ratio of 1:15, and a 20-min extraction time——the extraction efficiency of cinnamaldehyde and cinnamic acid was significantly improved compared to traditional methods. Moreover, the use of the ultrasonic-microwave synergistic extraction technique demonstrated higher efficiency and lower environmental impact due to reduced waste production. The study also revealed that cinnamaldehyde and cinnamic acid in cinnamon twigs exhibited strong polarity characteristics and microwave absorption capacity, contributing to enhanced cell disruption and increased natural product release. These findings provide a robust basis for the development of an efficient and environmentally friendly extraction process for these valuable bioactive compounds.</p></div>","PeriodicalId":631,"journal":{"name":"Journal of Food Measurement and Characterization","volume":"19 1","pages":"619 - 629"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Measurement and Characterization","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11694-024-02994-w","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study explored the ultrasonic-microwave synergistic extraction technique for obtaining cinnamaldehyde and cinnamic acid from cinnamon twigs, and determined the most favorable extraction conditions. The optimization of extraction parameters, including extraction time, ethanol concentration, liquid-to-solid ratio, and microwave power, was achieved through single-factor experiments and the response surface method. The results of the significance analysis indicated that ethanol concentration and extraction power were the two primary factors affecting the extraction rates of cinnamaldehyde and cinnamic acid. Under the optimal conditions—600 W microwave power, 75% ethanol concentration, a liquid-to-solid ratio of 1:15, and a 20-min extraction time——the extraction efficiency of cinnamaldehyde and cinnamic acid was significantly improved compared to traditional methods. Moreover, the use of the ultrasonic-microwave synergistic extraction technique demonstrated higher efficiency and lower environmental impact due to reduced waste production. The study also revealed that cinnamaldehyde and cinnamic acid in cinnamon twigs exhibited strong polarity characteristics and microwave absorption capacity, contributing to enhanced cell disruption and increased natural product release. These findings provide a robust basis for the development of an efficient and environmentally friendly extraction process for these valuable bioactive compounds.
期刊介绍:
This interdisciplinary journal publishes new measurement results, characteristic properties, differentiating patterns, measurement methods and procedures for such purposes as food process innovation, product development, quality control, and safety assurance.
The journal encompasses all topics related to food property measurement and characterization, including all types of measured properties of food and food materials, features and patterns, measurement principles and techniques, development and evaluation of technologies, novel uses and applications, and industrial implementation of systems and procedures.