Assessing complex protein-solvent interactions using environment-controlled crack-growth experiments

IF 2.2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tristan Baumberger, Olivier Ronsin
{"title":"Assessing complex protein-solvent interactions using environment-controlled crack-growth experiments","authors":"Tristan Baumberger,&nbsp;Olivier Ronsin","doi":"10.1007/s10704-024-00826-y","DOIUrl":null,"url":null,"abstract":"<div><p>The modulation of protein functionality, i.e. their ability to fold/unfold, by adding low molecular weight substances to the “natural” solvent water is an important issue in biochemistry. Taking advantage of the unique ability of gelatin to self assemble into elastic networks via partial renaturation of the native collagen protein, we propose to recast the issue into a fracture mechanics one. We describe a method to decipher the effect of alcohols as cosolvents on gelatin networks from the shift of fracture energy in response to an environmental shock. After suitable subtraction of the viscous dissipation we are able characterize the solvent/network interaction by the relative shift of the free energy characteristic of the crosslinked<span>\\(\\rightarrow \\)</span>dismanteled transition of the network associated to its fracture. Using two alcohols, methanol and glycerol, we show that our method is able to accounts for their known contrasting effects on proteins. We briefly discuss the nature of the energy of interaction. In addition we unveil an open issue regarding the origin and consequence of the poroelastic solvent flow associated to crack propagation in hydrogels.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-024-00826-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The modulation of protein functionality, i.e. their ability to fold/unfold, by adding low molecular weight substances to the “natural” solvent water is an important issue in biochemistry. Taking advantage of the unique ability of gelatin to self assemble into elastic networks via partial renaturation of the native collagen protein, we propose to recast the issue into a fracture mechanics one. We describe a method to decipher the effect of alcohols as cosolvents on gelatin networks from the shift of fracture energy in response to an environmental shock. After suitable subtraction of the viscous dissipation we are able characterize the solvent/network interaction by the relative shift of the free energy characteristic of the crosslinked\(\rightarrow \)dismanteled transition of the network associated to its fracture. Using two alcohols, methanol and glycerol, we show that our method is able to accounts for their known contrasting effects on proteins. We briefly discuss the nature of the energy of interaction. In addition we unveil an open issue regarding the origin and consequence of the poroelastic solvent flow associated to crack propagation in hydrogels.

利用环境控制的裂纹生长实验评估复杂的蛋白质-溶剂相互作用
通过向“天然”溶剂水中添加低分子量物质来调节蛋白质的功能,即蛋白质折叠/展开的能力,是生物化学中的一个重要问题。利用明胶通过天然胶原蛋白的部分复性自组装成弹性网络的独特能力,我们建议将该问题重新定义为断裂力学问题。我们描述了一种方法来破译乙醇作为共溶剂对明胶网络的影响,从断裂能量的变化来响应环境冲击。在适当地减去黏性耗散后,我们可以通过与断裂相关的交联\(\rightarrow \)网络的解离跃迁的自由能特征的相对位移来表征溶剂/网络的相互作用。使用两种醇,甲醇和甘油,我们证明了我们的方法能够解释它们对蛋白质的已知对比效应。我们简要地讨论了相互作用能量的性质。此外,我们还揭示了一个悬而未决的问题,即与水凝胶中裂纹扩展相关的孔弹性溶剂流动的起源和后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Fracture
International Journal of Fracture 物理-材料科学:综合
CiteScore
4.80
自引率
8.00%
发文量
74
审稿时长
13.5 months
期刊介绍: The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications. The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged. In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信