Oriented lamellar PEG-based nanocomposite with adjustable thermal transfer efficiency for efficient atmospheric water harvesting

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yanyan Ma  (, ), Jifeng Li  (, ), Tao Ding  (, ), Qichun Feng  (, ), Zhaofang Du  (, )
{"title":"Oriented lamellar PEG-based nanocomposite with adjustable thermal transfer efficiency for efficient atmospheric water harvesting","authors":"Yanyan Ma \n (,&nbsp;),&nbsp;Jifeng Li \n (,&nbsp;),&nbsp;Tao Ding \n (,&nbsp;),&nbsp;Qichun Feng \n (,&nbsp;),&nbsp;Zhaofang Du \n (,&nbsp;)","doi":"10.1007/s40843-024-3163-0","DOIUrl":null,"url":null,"abstract":"<div><p>Water loss rate is crucial in evaluating the efficiency of atmospheric water harvesting (AWH) materials. However, most moisture-absorbing salts and gels have fixed heat transfer rates, limiting the development of high-performance AWH materials. Herein, an anisotropic PEG/CS/MF nanocomposite (APCM) with adjustable thermal transfer efficiency is presented. APCM was synthesized using polyethylene glycol (PEG), melamine foam (MF), and chitosan (CS) solution through a freeze orientation method. The resulting material exhibits a stable oriented laminated structure formed by hydrogen bonding between PEG, CS, and MF. This unique structure imparts excellent mechanical properties. APCM’s large lamellar gaps and pore diameters enable rapid absorption of atmospheric water molecules at low temperatures without leakage (61.79 kg m<sup>−3</sup>). The compressible nature of APCM allows for efficient heat transfer at high temperatures, and the release of 80% of absorbed water within 15 min. In a proof-of-concept demonstration using a custom-built AWH device, each cubic meter of APCM achieved three AWH cycles within 24 h, producing over 185 kg of water. Therefore, this innovative design offers a promising solution for enhancing the efficiency of AWH, potentially addressing water scarcity issues in various regions.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 1","pages":"244 - 252"},"PeriodicalIF":6.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3163-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Water loss rate is crucial in evaluating the efficiency of atmospheric water harvesting (AWH) materials. However, most moisture-absorbing salts and gels have fixed heat transfer rates, limiting the development of high-performance AWH materials. Herein, an anisotropic PEG/CS/MF nanocomposite (APCM) with adjustable thermal transfer efficiency is presented. APCM was synthesized using polyethylene glycol (PEG), melamine foam (MF), and chitosan (CS) solution through a freeze orientation method. The resulting material exhibits a stable oriented laminated structure formed by hydrogen bonding between PEG, CS, and MF. This unique structure imparts excellent mechanical properties. APCM’s large lamellar gaps and pore diameters enable rapid absorption of atmospheric water molecules at low temperatures without leakage (61.79 kg m−3). The compressible nature of APCM allows for efficient heat transfer at high temperatures, and the release of 80% of absorbed water within 15 min. In a proof-of-concept demonstration using a custom-built AWH device, each cubic meter of APCM achieved three AWH cycles within 24 h, producing over 185 kg of water. Therefore, this innovative design offers a promising solution for enhancing the efficiency of AWH, potentially addressing water scarcity issues in various regions.

具有可调热传导效率的定向层状聚乙二醇基纳米复合材料用于高效的大气水收集
水分损失率是评价大气集水材料效率的重要指标。然而,大多数吸湿盐和凝胶具有固定的传热速率,限制了高性能AWH材料的发展。本文提出了一种具有可调热传导效率的各向异性PEG/CS/MF纳米复合材料(APCM)。以聚乙二醇(PEG)、三聚氰胺泡沫(MF)和壳聚糖(CS)为原料,采用冷冻定向法制备了APCM。所得材料表现出PEG、CS和MF之间氢键形成的稳定定向层压结构。这种独特的结构赋予了优异的机械性能。APCM的大片层间隙和孔径使其能够在低温下快速吸收大气水分子而不泄漏(61.79 kg m - 3)。APCM的可压缩特性允许在高温下进行有效的传热,并在15分钟内释放80%的吸收水。在使用定制的AWH设备的概念验证演示中,每立方米APCM在24小时内实现了三次AWH循环,产生超过185公斤的水。因此,这种创新的设计为提高水资源利用效率提供了一个有希望的解决方案,有可能解决各个地区的水资源短缺问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信