Zhenxu Lin
(, ), Rui Huang
(, ), Jie Song
(, ), Yi Zhang
(, ), Zewen Lin
(, ), Hongliang Li
(, ), Haixia Wu
(, ), Dejian Hou
(, ), Yanqing Guo
(, ), Jing Wang
(, ), Paul K. Chu
(, )
{"title":"Enhancing negative thermal quenching in green-emitting perovskite microspheres via shallow trap state modulation","authors":"Zhenxu Lin \n (, ), Rui Huang \n (, ), Jie Song \n (, ), Yi Zhang \n (, ), Zewen Lin \n (, ), Hongliang Li \n (, ), Haixia Wu \n (, ), Dejian Hou \n (, ), Yanqing Guo \n (, ), Jing Wang \n (, ), Paul K. Chu \n (, )","doi":"10.1007/s40843-024-3134-1","DOIUrl":null,"url":null,"abstract":"<div><p>For luminescent materials, negative thermal quenching (NTQ), characterized by an increase in the luminescent intensity with temperature, has a large potential in lighting and display technologies. However, leveraging NTQ in metal halide perovskites is challenging, and the mechanism is not well understood. Herein, by utilizing low-temperature photoluminescence, persistent luminescence and thermoluminescence, the origins of NTQ in CsPbBr<sub>3</sub> microspheres are systematically studied, which pertain to the liberation of carriers from shallow trap states. Experimental and theoretical investigations reveal that the energy of these shallow defect states is approximately 0.135 eV beneath the conduction band. A rapid thermal treatment increases the density of these shallow traps and amplifies the NTQ effect, resulting in an enhancement of room-temperature photoluminescence by more than 60% compared to that at 150 K. The process also reduces the threshold for amplified spontaneous emission to about 45 W/cm<sup>2</sup>. Our findings not only provide a deeper understanding of the NTQ phenomenon in CsPbBr<sub>3</sub> microspheres but also open new avenues for enhancing the performance of perovskite optoelectronic devices through energy state regulation.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 1","pages":"149 - 155"},"PeriodicalIF":6.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40843-024-3134-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3134-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
For luminescent materials, negative thermal quenching (NTQ), characterized by an increase in the luminescent intensity with temperature, has a large potential in lighting and display technologies. However, leveraging NTQ in metal halide perovskites is challenging, and the mechanism is not well understood. Herein, by utilizing low-temperature photoluminescence, persistent luminescence and thermoluminescence, the origins of NTQ in CsPbBr3 microspheres are systematically studied, which pertain to the liberation of carriers from shallow trap states. Experimental and theoretical investigations reveal that the energy of these shallow defect states is approximately 0.135 eV beneath the conduction band. A rapid thermal treatment increases the density of these shallow traps and amplifies the NTQ effect, resulting in an enhancement of room-temperature photoluminescence by more than 60% compared to that at 150 K. The process also reduces the threshold for amplified spontaneous emission to about 45 W/cm2. Our findings not only provide a deeper understanding of the NTQ phenomenon in CsPbBr3 microspheres but also open new avenues for enhancing the performance of perovskite optoelectronic devices through energy state regulation.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.