Conditional earthquake probabilities along the North Anatolian fault zone based on inverse Gaussian against lognormal distribution

IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Murat Nas, Yusuf Bayrak, Eleni Mpapka, Theodoros M. Tsapanos
{"title":"Conditional earthquake probabilities along the North Anatolian fault zone based on inverse Gaussian against lognormal distribution","authors":"Murat Nas,&nbsp;Yusuf Bayrak,&nbsp;Eleni Mpapka,&nbsp;Theodoros M. Tsapanos","doi":"10.1007/s10950-024-10244-1","DOIUrl":null,"url":null,"abstract":"<div><p>This study offers a comprehensive forecast of conditional earthquake recurrence probabilities in the North Anatolian Fault Zone (NAFZ), utilizing advanced statistical models and temporal analyses, aiming to discern the likelihood of future earthquakes. We sought to contribute insights into seismic hazard assessment by analyzing earthquakes (M<sub>W</sub> ≥ 4.0) from 1900–2022, employing Inverse Gaussian (aka Brownian Passage Time) and Lognormal distribution models, categorizing the NAFZ into ten seismic zones. Rigorous model fitness assessments were conducted, including Akaike and Bayesian information criteria, Kolmogorov–Smirnov, and Anderson–Darling tests. Conditional probabilities were calculated across eleven temporal intervals (0–50 years) and eleven residual periods (1–50 years), starting on January 1, 2023, and extending into the future. Results reveal nuanced earthquake probabilities, highlighting a heterogeneous seismic hazard landscape. Probability forecasts surge within the initial five years and continue to rise for another five years, underscoring the spatiotemporal sensitivity and widespread earthquake hazard. The findings enhance the understanding of seismic hazard assessment, extending the future applicability potential to global seismic regions. Acknowledging uncertainties and relying on instrumental data, future research could explore more extensive areas and refined data sources, along with new modeling techniques, to enhance forecasting accuracy. The findings stress the need for earthquake preparedness throughout the study area, not only for the anticipated large earthquakes but especially for medium-magnitude earthquakes. This remark manifestly underscores the necessity to develop strategies to reduce possible damage and loss of life stemming from the collapse of non-engineered and rural building stock unevenly scattered along the NAFZ that remain vulnerable to moderate-magnitude earthquakes.</p></div>","PeriodicalId":16994,"journal":{"name":"Journal of Seismology","volume":"28 6","pages":"1389 - 1420"},"PeriodicalIF":1.6000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Seismology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10950-024-10244-1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study offers a comprehensive forecast of conditional earthquake recurrence probabilities in the North Anatolian Fault Zone (NAFZ), utilizing advanced statistical models and temporal analyses, aiming to discern the likelihood of future earthquakes. We sought to contribute insights into seismic hazard assessment by analyzing earthquakes (MW ≥ 4.0) from 1900–2022, employing Inverse Gaussian (aka Brownian Passage Time) and Lognormal distribution models, categorizing the NAFZ into ten seismic zones. Rigorous model fitness assessments were conducted, including Akaike and Bayesian information criteria, Kolmogorov–Smirnov, and Anderson–Darling tests. Conditional probabilities were calculated across eleven temporal intervals (0–50 years) and eleven residual periods (1–50 years), starting on January 1, 2023, and extending into the future. Results reveal nuanced earthquake probabilities, highlighting a heterogeneous seismic hazard landscape. Probability forecasts surge within the initial five years and continue to rise for another five years, underscoring the spatiotemporal sensitivity and widespread earthquake hazard. The findings enhance the understanding of seismic hazard assessment, extending the future applicability potential to global seismic regions. Acknowledging uncertainties and relying on instrumental data, future research could explore more extensive areas and refined data sources, along with new modeling techniques, to enhance forecasting accuracy. The findings stress the need for earthquake preparedness throughout the study area, not only for the anticipated large earthquakes but especially for medium-magnitude earthquakes. This remark manifestly underscores the necessity to develop strategies to reduce possible damage and loss of life stemming from the collapse of non-engineered and rural building stock unevenly scattered along the NAFZ that remain vulnerable to moderate-magnitude earthquakes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Seismology
Journal of Seismology 地学-地球化学与地球物理
CiteScore
3.30
自引率
6.20%
发文量
67
审稿时长
3 months
期刊介绍: Journal of Seismology is an international journal specialising in all observational and theoretical aspects related to earthquake occurrence. Research topics may cover: seismotectonics, seismicity, historical seismicity, seismic source physics, strong ground motion studies, seismic hazard or risk, engineering seismology, physics of fault systems, triggered and induced seismicity, mining seismology, volcano seismology, earthquake prediction, structural investigations ranging from local to regional and global studies with a particular focus on passive experiments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信