Cheng Qian
(, ), Lixia Xie
(, ), Lijie Liu
(, ), Zhanqi Cao
(, ), Dongjie Tian
(, ), Dongdong Sun
(, ), Guoxing Liu
(, ), Zhiqian Guo
(, ), Xin Zheng
(, )
{"title":"Anion-induced opposite mechanochromic and thermochromic emission directions of protonated hydrazones","authors":"Cheng Qian \n (, ), Lixia Xie \n (, ), Lijie Liu \n (, ), Zhanqi Cao \n (, ), Dongjie Tian \n (, ), Dongdong Sun \n (, ), Guoxing Liu \n (, ), Zhiqian Guo \n (, ), Xin Zheng \n (, )","doi":"10.1007/s40843-024-3169-8","DOIUrl":null,"url":null,"abstract":"<div><p>Smart materials with tunable multiple-color emissions have been widely investigated in the fields of bioimaging, display, and information encryption. Herein, multicolor emissive molecules with hydrazone bridged triphenylamines and pyridinium groups are reported. The protonation of the pyridine subunit by various acids leads to aggregation-induced emission with broad emission colors ranging from blue to red in multiple states and spectra of <i>λ</i><sub>PL</sub>, dichloromethane solution = 463–584 nm, <i>λ</i><sub>PL,powder</sub> = 455–620 nm, and <i>λ</i><sub>PL,crystal</sub> = 485–657 nm, respectively. Upon grinding or heating, hydrazone with CF<sub>3</sub>COO<sup>−</sup> exhibit blue-shift emissions from red to yellow due to weakened molecular packing and conformational rigidity. In contrast, hydrazone with (CF<sub>3</sub>SO<sub>2</sub>)<sub>2</sub>N<sup>−</sup> exhibited redshift emission from green to yellow due to the decreased electron-donating ability of the triphenylamine unit upon transformation from a rigid pyramidal shape to a planar structure. These are rare, charged organic examples exhibiting predictable mechanochromic and thermochromic strong emissions through facile anion exchanges, potentially providing new insights into the design of smart materials.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 1","pages":"125 - 131"},"PeriodicalIF":6.8000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3169-8","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Smart materials with tunable multiple-color emissions have been widely investigated in the fields of bioimaging, display, and information encryption. Herein, multicolor emissive molecules with hydrazone bridged triphenylamines and pyridinium groups are reported. The protonation of the pyridine subunit by various acids leads to aggregation-induced emission with broad emission colors ranging from blue to red in multiple states and spectra of λPL, dichloromethane solution = 463–584 nm, λPL,powder = 455–620 nm, and λPL,crystal = 485–657 nm, respectively. Upon grinding or heating, hydrazone with CF3COO− exhibit blue-shift emissions from red to yellow due to weakened molecular packing and conformational rigidity. In contrast, hydrazone with (CF3SO2)2N− exhibited redshift emission from green to yellow due to the decreased electron-donating ability of the triphenylamine unit upon transformation from a rigid pyramidal shape to a planar structure. These are rare, charged organic examples exhibiting predictable mechanochromic and thermochromic strong emissions through facile anion exchanges, potentially providing new insights into the design of smart materials.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.