Muon (g − 2) and thermal WIMP DM in \( \textrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} \) models

IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy
Seungwon Baek, Jongkuk Kim, P. Ko
{"title":"Muon (g − 2) and thermal WIMP DM in \\( \\textrm{U}{(1)}_{L_{\\mu }-{L}_{\\tau }} \\) models","authors":"Seungwon Baek,&nbsp;Jongkuk Kim,&nbsp;P. Ko","doi":"10.1007/JHEP01(2025)014","DOIUrl":null,"url":null,"abstract":"<p>The <span>\\( \\textrm{U}{(1)}_{L_{\\mu }-{L}_{\\tau }} \\)</span> model is anomaly-free with the Standard Model (SM) fermion content, and can make substantial contributions to the muon (<i>g</i> − 2) at the level of ∆<i>a</i><sub><i>μ</i></sub> ∼ <i>O</i>(10) × 10<sup><i>−</i>10</sup> for <span>\\( {M}_{Z^{\\prime }} \\)</span> ∼ <i>O</i>(10 − 100) MeV and <i>g</i><sub><i>X</i></sub> ∼ (4 − 8) × 10<sup><i>−</i>4</sup>. In this light <i>Z</i>′ region, it was claimed that the model can also incorporate thermal WIMP dark matter (DM) if <i>M</i><sub>DM</sub> ∼ <span>\\( {M}_{Z^{\\prime }} \\)</span>/2. This setup relies on DM particles annihilating into SM particles through a <i>Z</i>′-mediated s-channel. In this work, we show that this tight relationship between <span>\\( {M}_{Z^{\\prime }} \\)</span> and <i>M</i><sub>DM</sub> can be evaded or nullified both for scalar and spin-1/2 DM by considering the contributions from the dark Higgs boson (<i>H</i><sub>1</sub>). The dark Higgs boson plays an important role, not only because it gives mass to the dark photon but also because it introduces additional DM annihilation channels, including new final states such as <i>H</i><sub>1</sub><i>H</i><sub>1</sub>, <i>Z</i>′<i>Z</i>′, and <i>Z</i>′<i>H</i><sub>1</sub>. As a result, the model does not require a close mass correlation between the <i>Z</i>′ boson and dark matter <i>M</i><sub>DM</sub> ~ <span>\\( {M}_{Z^{\\prime }} \\)</span>/2 any longer, allowing for a broader range of mass possibilities for both scalar and fermionic dark matter types. We explore in great details various scenarios where the U(1) symmetry is either fully broken or partially remains as discrete symmetries, <i>Z</i><sub>2</sub> or <i>Z</i><sub>3</sub>. This approach broadens the model’s capacity to accommodate various WIMP dark matter phenomena in the light <i>Z</i>′ region where the muon (<i>g</i> − 2)<sub><i>μ</i></sub> makes a sensitive probe of the model.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2025)014.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP01(2025)014","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

The \( \textrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} \) model is anomaly-free with the Standard Model (SM) fermion content, and can make substantial contributions to the muon (g − 2) at the level of ∆aμO(10) × 1010 for \( {M}_{Z^{\prime }} \)O(10 − 100) MeV and gX ∼ (4 − 8) × 104. In this light Z′ region, it was claimed that the model can also incorporate thermal WIMP dark matter (DM) if MDM\( {M}_{Z^{\prime }} \)/2. This setup relies on DM particles annihilating into SM particles through a Z′-mediated s-channel. In this work, we show that this tight relationship between \( {M}_{Z^{\prime }} \) and MDM can be evaded or nullified both for scalar and spin-1/2 DM by considering the contributions from the dark Higgs boson (H1). The dark Higgs boson plays an important role, not only because it gives mass to the dark photon but also because it introduces additional DM annihilation channels, including new final states such as H1H1, ZZ′, and ZH1. As a result, the model does not require a close mass correlation between the Z′ boson and dark matter MDM ~ \( {M}_{Z^{\prime }} \)/2 any longer, allowing for a broader range of mass possibilities for both scalar and fermionic dark matter types. We explore in great details various scenarios where the U(1) symmetry is either fully broken or partially remains as discrete symmetries, Z2 or Z3. This approach broadens the model’s capacity to accommodate various WIMP dark matter phenomena in the light Z′ region where the muon (g − 2)μ makes a sensitive probe of the model.

\( \textrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} \)模型中的μ子(g−2)和热WIMP DM
\( \textrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} \)模型与标准模型(SM)费米子含量无异常,并且对于\( {M}_{Z^{\prime }} \) ~ O(10−100)MeV和gX ~(4−8)× 10−4,可以在∆μ ~ O(10) × 10−10水平上对μ子(g−2)做出实质性贡献。在这个轻Z区,如果MDM ~ \( {M}_{Z^{\prime }} \) /2,该模型也可以纳入热WIMP暗物质(DM)。这种设置依赖于DM粒子通过Z '介导的s通道湮灭成SM粒子。在这项工作中,我们表明,考虑到暗希格斯玻色子(H1)的贡献,对于标量和自旋为1/2的DM, \( {M}_{Z^{\prime }} \)和MDM之间的紧密关系可以被回避或取消。暗希格斯玻色子扮演着重要的角色,不仅因为它给暗光子提供了质量,还因为它引入了额外的DM湮灭通道,包括新的最终态,如H1H1、Z ‘ Z ’和Z ' h1。因此,该模型不再需要Z’玻色子和暗物质MDM \( {M}_{Z^{\prime }} \) /2之间的密切质量相关性,从而允许标量和费米子暗物质类型的更广泛的质量可能性。我们非常详细地探讨了各种情况,其中U(1)对称性要么完全破坏,要么部分保持为离散对称,Z2或Z3。这种方法扩大了模型的能力,以适应光Z区的各种WIMP暗物质现象,其中μ子(g−2)μ是模型的敏感探针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信