Tiantian Lou
(, ), Letian Chen
(, ), Guichun Yang
(, ), Peng Chen
(, ), Wenyan Zhao
(, ), Hongshi Li
(, ), Guoran Li
(, )
{"title":"Unraveling the colloidal composition of perovskite precursor solutions and its impact on film formation","authors":"Tiantian Lou \n (, ), Letian Chen \n (, ), Guichun Yang \n (, ), Peng Chen \n (, ), Wenyan Zhao \n (, ), Hongshi Li \n (, ), Guoran Li \n (, )","doi":"10.1007/s40843-024-3189-1","DOIUrl":null,"url":null,"abstract":"<div><p>Colloids are a vital component of perovskite precursor solutions (PPSs), significantly influencing the quality of perovskite film formation. Despite their importance, a comprehensive understanding of these colloids remains elusive. In this work, we explored the colloidal compositions of two distinct PPS types: the monomer-mixing dissolution (MMD) and the pre-synthesized perovskite single crystal redissolution (SCR). We have uncovered a new dissolution chemical equilibrium mechanism where the transition from mixed monomers to the 3C cubic phase (α-phase) involves a reversible transformation. Our findings indicate that although colloidal size significantly affects the nucleation during perovskite crystallization, the composition of the colloids plays a more crucial role. The MMD method yields poly Pb-I·solvent clusters while the colloids derived from the SCR approach produce hexagonal lead-halide-based perovskite phase clusters. These divergent colloidal compositions lead to markedly different impacts on the perovskite film formation process. Notably, hexagonal-phase colloids act as favorable nucleation sites, promoting the generation of the α-phase perovskite films with larger grains, more homogeneous phases, and fewer defects. This work demonstrates the importance of tailoring colloidal compositions and provides theoretical insights into the beneficial effects of redissolving perovskite in forms such as powder, microcrystals, and single crystals.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 1","pages":"156 - 164"},"PeriodicalIF":6.8000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3189-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Colloids are a vital component of perovskite precursor solutions (PPSs), significantly influencing the quality of perovskite film formation. Despite their importance, a comprehensive understanding of these colloids remains elusive. In this work, we explored the colloidal compositions of two distinct PPS types: the monomer-mixing dissolution (MMD) and the pre-synthesized perovskite single crystal redissolution (SCR). We have uncovered a new dissolution chemical equilibrium mechanism where the transition from mixed monomers to the 3C cubic phase (α-phase) involves a reversible transformation. Our findings indicate that although colloidal size significantly affects the nucleation during perovskite crystallization, the composition of the colloids plays a more crucial role. The MMD method yields poly Pb-I·solvent clusters while the colloids derived from the SCR approach produce hexagonal lead-halide-based perovskite phase clusters. These divergent colloidal compositions lead to markedly different impacts on the perovskite film formation process. Notably, hexagonal-phase colloids act as favorable nucleation sites, promoting the generation of the α-phase perovskite films with larger grains, more homogeneous phases, and fewer defects. This work demonstrates the importance of tailoring colloidal compositions and provides theoretical insights into the beneficial effects of redissolving perovskite in forms such as powder, microcrystals, and single crystals.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.