Azza M. Shaker, Mohamed Khedawy, Abeer A. Moneer, Nabila M. El-Mallah, Mohamed S. Ramadan
{"title":"Loading of anionic surfactant on eco-friendly biochar and its applications in Cr(VI) removal: adsorption, kinetics, and reusability studies","authors":"Azza M. Shaker, Mohamed Khedawy, Abeer A. Moneer, Nabila M. El-Mallah, Mohamed S. Ramadan","doi":"10.1186/s13065-024-01363-4","DOIUrl":null,"url":null,"abstract":"<div><p>Surfactant-modified biochar is a viable adsorbent for eliminating Cr(VI) from synthetic wastewater. The biochar obtained from the <i>zea mays</i> plant (BC) was tailored with sodium dodecyl sulfate (SDS) as an anionic surfactant forming SDS-BC adsorbent. Different controlling conditions have been evaluated including pH of the solution, biomass concentration, primary Cr(VI) concentration, time of adsorption, and temperature. Under the best controlling circumstances, the percentage of removal has attained 99%. The pseudo-second-order kinetic model best described the removal process, according to the kinetic data, while the Temkin model, one of the applicable adsorption isotherm models, well expressed the adsorption process. The thermodynamic parameters were computed, which disclosed the spontaneity and exothermic character of the Cr(VI) elimination. According to the regeneration cycles, SDS-BC was cost-effective and had a good removal capability.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-024-01363-4","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-024-01363-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Surfactant-modified biochar is a viable adsorbent for eliminating Cr(VI) from synthetic wastewater. The biochar obtained from the zea mays plant (BC) was tailored with sodium dodecyl sulfate (SDS) as an anionic surfactant forming SDS-BC adsorbent. Different controlling conditions have been evaluated including pH of the solution, biomass concentration, primary Cr(VI) concentration, time of adsorption, and temperature. Under the best controlling circumstances, the percentage of removal has attained 99%. The pseudo-second-order kinetic model best described the removal process, according to the kinetic data, while the Temkin model, one of the applicable adsorption isotherm models, well expressed the adsorption process. The thermodynamic parameters were computed, which disclosed the spontaneity and exothermic character of the Cr(VI) elimination. According to the regeneration cycles, SDS-BC was cost-effective and had a good removal capability.
期刊介绍:
BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family.
Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.