{"title":"The Role of Long-Range Interactions Between High-Entropy Single-Atoms in Catalyzing Sulfur Conversion Reactions","authors":"Yu Zhang, Tong Yu, Ru Xiao, Pei Tang, Ruopian Fang, Zhuangnan Li, Hui-Ming Cheng, Zhenhua Sun, Feng Li","doi":"10.1002/adma.202413653","DOIUrl":null,"url":null,"abstract":"Sulfur conversion reactions are the foundation of lithium–sulfur batteries but usually possess sluggish kinetics during practical battery operation. Herein, a high-entropy single-atom catalyst (HESAC) is synthesized for this process. In contrast to conventional dual-atom catalysts that form metal–metal bonds, the center metal atoms in HESAC are not bonded but exhibit long-range interactions at a sub-nanometer distance (<9 Å). The synergistic effect between the long-range interactions and entropy changes enables the regulation of <i>d-</i> and <i>π-</i>electron states. This alteration in the electronic structure improves the adsorption and electronic conductivity of intermediate polysulfides, thereby accelerating their conversion kinetics. Consequently, this leads to a significant enhancement in specific capacities by ≈40% at high rates compared to single-atom catalysts. The resulting lithium–sulfur battery with HESAC demonstrates a remarkable areal capacity of 3.4 mAh cm<sup>−2</sup> at 10 C. These findings provide valuable insights into the design principle of metal atom catalysts for electrochemical reactions.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"28 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202413653","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sulfur conversion reactions are the foundation of lithium–sulfur batteries but usually possess sluggish kinetics during practical battery operation. Herein, a high-entropy single-atom catalyst (HESAC) is synthesized for this process. In contrast to conventional dual-atom catalysts that form metal–metal bonds, the center metal atoms in HESAC are not bonded but exhibit long-range interactions at a sub-nanometer distance (<9 Å). The synergistic effect between the long-range interactions and entropy changes enables the regulation of d- and π-electron states. This alteration in the electronic structure improves the adsorption and electronic conductivity of intermediate polysulfides, thereby accelerating their conversion kinetics. Consequently, this leads to a significant enhancement in specific capacities by ≈40% at high rates compared to single-atom catalysts. The resulting lithium–sulfur battery with HESAC demonstrates a remarkable areal capacity of 3.4 mAh cm−2 at 10 C. These findings provide valuable insights into the design principle of metal atom catalysts for electrochemical reactions.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.