MOF-derived Carbon-Based Materials for Energy-Related Applications

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lulu Chai, Rui Li, Yanzhi Sun, Kun Zhou, Junqing Pan
{"title":"MOF-derived Carbon-Based Materials for Energy-Related Applications","authors":"Lulu Chai, Rui Li, Yanzhi Sun, Kun Zhou, Junqing Pan","doi":"10.1002/adma.202413658","DOIUrl":null,"url":null,"abstract":"New carbon-based materials (CMs) are recommended as attractively active materials due to their diverse nanostructures and unique electron transport pathways, demonstrating great potential for highly efficient energy storage applications, electrocatalysis, and beyond. Among these newly reported CMs, metal–organic framework (MOF)-derived CMs have achieved impressive development momentum based on their high specific surface areas, tunable porosity, and flexible structural-functional integration. However, obstacles regarding the integrity of porous structures, the complexity of preparation processes, and the precise control of active components hinder the regulation of precise interface engineering in CMs. In this context, this review systematically summarizes the latest advances in tailored types, processing strategies, and energy-related applications of MOF-derived CMs and focuses on the structure-activity relationship of metal-free carbon, metal-doped carbon, and metallide-doped carbon. Particularly, the intrinsic correlation and evolutionary behavior between the synergistic interaction of micro/nanostructures and active species with electrochemical performances are emphasized. Finally, unique insights and perspectives on the latest relevant research are presented, and the future development prospects and challenges of MOF-derived CMs are discussed, providing valuable guidance to boost high-performance electrochemical electrodes for a broader range of application fields.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"36 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202413658","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

New carbon-based materials (CMs) are recommended as attractively active materials due to their diverse nanostructures and unique electron transport pathways, demonstrating great potential for highly efficient energy storage applications, electrocatalysis, and beyond. Among these newly reported CMs, metal–organic framework (MOF)-derived CMs have achieved impressive development momentum based on their high specific surface areas, tunable porosity, and flexible structural-functional integration. However, obstacles regarding the integrity of porous structures, the complexity of preparation processes, and the precise control of active components hinder the regulation of precise interface engineering in CMs. In this context, this review systematically summarizes the latest advances in tailored types, processing strategies, and energy-related applications of MOF-derived CMs and focuses on the structure-activity relationship of metal-free carbon, metal-doped carbon, and metallide-doped carbon. Particularly, the intrinsic correlation and evolutionary behavior between the synergistic interaction of micro/nanostructures and active species with electrochemical performances are emphasized. Finally, unique insights and perspectives on the latest relevant research are presented, and the future development prospects and challenges of MOF-derived CMs are discussed, providing valuable guidance to boost high-performance electrochemical electrodes for a broader range of application fields.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信