Conductive Eutectogels Fabricated by Dialdehyde Xylan/Liquid Metal-Initiated Rapid Polymerization for Multi-Response Sensors and Self-Powered Applications
{"title":"Conductive Eutectogels Fabricated by Dialdehyde Xylan/Liquid Metal-Initiated Rapid Polymerization for Multi-Response Sensors and Self-Powered Applications","authors":"Jiyou Yang, Yin Yan, Lingzhi Huang, Mingguo Ma, Mingfei Li, Feng Peng, Weiwei Huan, Jing Bian","doi":"10.1021/acsnano.4c11127","DOIUrl":null,"url":null,"abstract":"Conductive eutectogels have emerged as candidates for constructing functional flexible electronics as they are free from the constraints posed by inherent defects associated with solvents and feeble network structures. Nevertheless, developing a facile, environmentally friendly, and rapid polymerization strategy for the construction of conductive eutectogels with integrated multifunctionality is still immensely challenging. Herein, a conductive eutectogel is fabricated through a one-step dialdehyde xylan (DAX)/liquid metal (LM)-initiated polymerization of a deep eutectic solvent. DAX acts as a stabilizer for the preparation of LM nanodroplets and plays a crucial role in facilitating ultrafast gelation (less than 2 min) by virtue of its reducing dialdehyde groups. Notably, this fabrication strategy obviates the use of toxic chemical initiators and cross-linkers. The resultant eutectogels exhibit extremely high stretchability (2860%), desirable self-healing ability, high conductivity (0.72 S m<sup>–1</sup>), biocompatibility, excellent environmental stability, and exceptional responsiveness to tensile strain (GF = 4.08) and temperature (TCR = 5.35% K<sup>–1</sup>). Benefiting from these integrated features, the conductive eutectogels serve as multifunctional flexible sensors for human motion recognition and temperature monitoring. Furthermore, the eutectogel serves as a pliable electrode in the assembly of a triboelectric nanogenerator (TENG), designed to harvest mechanical energy, convert it into stable electrical outputs, and enable self-powered sensing. This study offers an approach to fabricating multifunctional integrated conductive eutectogels, making it a step closer to the development of intelligent flexible electronics.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"204 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c11127","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Conductive eutectogels have emerged as candidates for constructing functional flexible electronics as they are free from the constraints posed by inherent defects associated with solvents and feeble network structures. Nevertheless, developing a facile, environmentally friendly, and rapid polymerization strategy for the construction of conductive eutectogels with integrated multifunctionality is still immensely challenging. Herein, a conductive eutectogel is fabricated through a one-step dialdehyde xylan (DAX)/liquid metal (LM)-initiated polymerization of a deep eutectic solvent. DAX acts as a stabilizer for the preparation of LM nanodroplets and plays a crucial role in facilitating ultrafast gelation (less than 2 min) by virtue of its reducing dialdehyde groups. Notably, this fabrication strategy obviates the use of toxic chemical initiators and cross-linkers. The resultant eutectogels exhibit extremely high stretchability (2860%), desirable self-healing ability, high conductivity (0.72 S m–1), biocompatibility, excellent environmental stability, and exceptional responsiveness to tensile strain (GF = 4.08) and temperature (TCR = 5.35% K–1). Benefiting from these integrated features, the conductive eutectogels serve as multifunctional flexible sensors for human motion recognition and temperature monitoring. Furthermore, the eutectogel serves as a pliable electrode in the assembly of a triboelectric nanogenerator (TENG), designed to harvest mechanical energy, convert it into stable electrical outputs, and enable self-powered sensing. This study offers an approach to fabricating multifunctional integrated conductive eutectogels, making it a step closer to the development of intelligent flexible electronics.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.