{"title":"Continuous Flow Telescopic Synthesis of 3-Methoxy Propiophenone by the Grignard Reaction","authors":"Pranali Wankhede, Amol A. Kulkarni","doi":"10.1021/acs.oprd.4c00447","DOIUrl":null,"url":null,"abstract":"The synthesis of 3-methoxypropiophenone <b>1</b>, a crucial intermediate in the production of the analgesic tapentadol hydrochloride, was investigated using a multistep continuous flow process. The approach is based on the Grignard reaction. A series of continuously stirred tank reactors (CSTRs) were employed: the first reactors facilitated the continuous generation of Grignard reagents <b>3</b>, which then reacted with propionitrile in the next CSTR to yield <b>1</b>. This was followed by quenching, neutralization, and phase separation, conducted under varying temperatures and residence times. When compared to a 50% yield from an optimized batch synthesis protocol, a continuous flow synthesis helped achieve an 84% yield of the desired product in a much shorter reaction time. A kinetic model was developed to predict the Grignard reagent formation and product yield, revealing that the mass transfer effect is insignificant at a higher stirring rate. The approach is highly scalable for the synthesis of pharmaceutical intermediates.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"45 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.oprd.4c00447","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The synthesis of 3-methoxypropiophenone 1, a crucial intermediate in the production of the analgesic tapentadol hydrochloride, was investigated using a multistep continuous flow process. The approach is based on the Grignard reaction. A series of continuously stirred tank reactors (CSTRs) were employed: the first reactors facilitated the continuous generation of Grignard reagents 3, which then reacted with propionitrile in the next CSTR to yield 1. This was followed by quenching, neutralization, and phase separation, conducted under varying temperatures and residence times. When compared to a 50% yield from an optimized batch synthesis protocol, a continuous flow synthesis helped achieve an 84% yield of the desired product in a much shorter reaction time. A kinetic model was developed to predict the Grignard reagent formation and product yield, revealing that the mass transfer effect is insignificant at a higher stirring rate. The approach is highly scalable for the synthesis of pharmaceutical intermediates.
期刊介绍:
The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.