Hongxiao Shi, Saiya Li, Yunge Liu, Ziying Shang, Lei Zhao, Yafang Lang, He Liu, Yiqing Wang, Jing Zhang, Dianyu Wang
{"title":"Transparent and Antifouling Lubrication Coating for Medical Applications Formed by a Self-Assembled Method","authors":"Hongxiao Shi, Saiya Li, Yunge Liu, Ziying Shang, Lei Zhao, Yafang Lang, He Liu, Yiqing Wang, Jing Zhang, Dianyu Wang","doi":"10.1021/acs.nanolett.4c05051","DOIUrl":null,"url":null,"abstract":"Lubrication surfaces reduce the risk of cross-contamination and enhance the long-term stability of medical devices, which holds significance in the realm of antifouling medical materials. However, the complexity of constructing micronano structures to immobilize lubricating fluids and the fluorine content typically found in silane coupling agents restrict their widespread adoption. In this study, we prepared a biomimetic lubricating coating (BLC) through the one-step self-assembly of octadecyltrichlorosilane and oil infusion. The BLC exhibits pronounced repellency to liquids of different surface tensions while maintaining a high transparency. Mechanism exploration indicates that the low surface tension of the coating impedes the binding of fibrinogen to the substrate, thus preventing the adhesion of coagulated blood. To prove this concept, we applied the BLC to pipet tips and endoscope lenses to evaluate the coating’s effectiveness. The results indicate that the coating shows significantly less residue, maintains clear visibility, and demonstrates excellent biocompatibility.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"13 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05051","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lubrication surfaces reduce the risk of cross-contamination and enhance the long-term stability of medical devices, which holds significance in the realm of antifouling medical materials. However, the complexity of constructing micronano structures to immobilize lubricating fluids and the fluorine content typically found in silane coupling agents restrict their widespread adoption. In this study, we prepared a biomimetic lubricating coating (BLC) through the one-step self-assembly of octadecyltrichlorosilane and oil infusion. The BLC exhibits pronounced repellency to liquids of different surface tensions while maintaining a high transparency. Mechanism exploration indicates that the low surface tension of the coating impedes the binding of fibrinogen to the substrate, thus preventing the adhesion of coagulated blood. To prove this concept, we applied the BLC to pipet tips and endoscope lenses to evaluate the coating’s effectiveness. The results indicate that the coating shows significantly less residue, maintains clear visibility, and demonstrates excellent biocompatibility.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.