Vallil Bavya, Thazhavilai Ponnu Devaraj Rajan, Kattimuttathu Ittara Suresh
{"title":"Design of Fluorescence Enhancing Sensor for Mercury Detection via Bamboo Cellulose-Derived Carbon Dots","authors":"Vallil Bavya, Thazhavilai Ponnu Devaraj Rajan, Kattimuttathu Ittara Suresh","doi":"10.1021/acs.langmuir.4c03942","DOIUrl":null,"url":null,"abstract":"Mercury contamination of the environment is extremely hazardous to human health because of its significant toxicity, especially in water. Biomass-derived fluorophores such as carbon dots (CDs) have emerged as eco-friendly and cost-effective alternative sensors that provide comparable efficacy while mitigating the environmental and economic drawbacks of conventional methods. In this work, we report the fabrication of a selective fluorescence-enhancing sensor based on sulfur-doped carbon dots (SCDs) using waste bamboo-derived cellulose and sodium thiosulfate as the soft base dopant, which actively complexes with mercury ions for detection. SCDs with an average size of 4 nm were synthesized hydrothermally, and the sulfur doping was confirmed quantitatively with an atomic percentage of 6.5%. Optical studies reveal an abnormal fluorescence enhancement of SCD in the presence of mercury due to the aggregation of carbon dots via sulfur-containing functional groups. The fabricated sensor exhibits a low detection limit of 5.16 nM, suggesting its application potential as a reliable mercury sensor. Real-time analyses carried out using tap water samples spiked with mercury and industry samples showed high efficiency for Hg(II) detection. The sensing performance was also demonstrated by using SCD-coated filter paper strips.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"6 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03942","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Mercury contamination of the environment is extremely hazardous to human health because of its significant toxicity, especially in water. Biomass-derived fluorophores such as carbon dots (CDs) have emerged as eco-friendly and cost-effective alternative sensors that provide comparable efficacy while mitigating the environmental and economic drawbacks of conventional methods. In this work, we report the fabrication of a selective fluorescence-enhancing sensor based on sulfur-doped carbon dots (SCDs) using waste bamboo-derived cellulose and sodium thiosulfate as the soft base dopant, which actively complexes with mercury ions for detection. SCDs with an average size of 4 nm were synthesized hydrothermally, and the sulfur doping was confirmed quantitatively with an atomic percentage of 6.5%. Optical studies reveal an abnormal fluorescence enhancement of SCD in the presence of mercury due to the aggregation of carbon dots via sulfur-containing functional groups. The fabricated sensor exhibits a low detection limit of 5.16 nM, suggesting its application potential as a reliable mercury sensor. Real-time analyses carried out using tap water samples spiked with mercury and industry samples showed high efficiency for Hg(II) detection. The sensing performance was also demonstrated by using SCD-coated filter paper strips.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).