{"title":"DNA Tetrahedron Reformative Lateral Flow Assay for Improved Detection Sensitivity and Anti-Interference","authors":"Naiyue Zhang, Siting Fu, Pengxiao Fu, Xiaowen Xu","doi":"10.1021/acs.langmuir.4c04663","DOIUrl":null,"url":null,"abstract":"The lateral flow assay is a strip-based analytical method for the portable and convenient detection of analytes of interest. It has the advantages of visual observation, autonomous sample flow, fast coloration time, minimal tedious operation procedures, and reliance on specialized instruments. However, the rough surface of the nitrocellulose membrane renders it difficult for the immobilized nucleic acids to remain in an ordered arrangement, and the immobilized nucleic acids are also liable to be digested in a complex matrix, inducing limited sensitivity and anti-interference. In this work, we demonstrate that the decoration of DNA nanostructures on lateral flow strips can improve assay sensitivity and anti-interference in comparison with commonly studied single-stranded DNA-disposed strips. DNA nanostructures enable probes to be more orderly and arranged on the strip and provide protection. Using adenosine 5′-triphosphate (ATP) as an analyte, a DNA tetrahedron reformative lateral flow strip has increased sensitivity and improved reliability in detection. The DNA nanostructure-decorated lateral flow strip is further successfully applied for ATP detection in real samples, such as bacterium testing and tableware cleanliness checking, by detection of the ATP content therein.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"48 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04663","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The lateral flow assay is a strip-based analytical method for the portable and convenient detection of analytes of interest. It has the advantages of visual observation, autonomous sample flow, fast coloration time, minimal tedious operation procedures, and reliance on specialized instruments. However, the rough surface of the nitrocellulose membrane renders it difficult for the immobilized nucleic acids to remain in an ordered arrangement, and the immobilized nucleic acids are also liable to be digested in a complex matrix, inducing limited sensitivity and anti-interference. In this work, we demonstrate that the decoration of DNA nanostructures on lateral flow strips can improve assay sensitivity and anti-interference in comparison with commonly studied single-stranded DNA-disposed strips. DNA nanostructures enable probes to be more orderly and arranged on the strip and provide protection. Using adenosine 5′-triphosphate (ATP) as an analyte, a DNA tetrahedron reformative lateral flow strip has increased sensitivity and improved reliability in detection. The DNA nanostructure-decorated lateral flow strip is further successfully applied for ATP detection in real samples, such as bacterium testing and tableware cleanliness checking, by detection of the ATP content therein.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).