DNA Tetrahedron Reformative Lateral Flow Assay for Improved Detection Sensitivity and Anti-Interference

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Naiyue Zhang, Siting Fu, Pengxiao Fu, Xiaowen Xu
{"title":"DNA Tetrahedron Reformative Lateral Flow Assay for Improved Detection Sensitivity and Anti-Interference","authors":"Naiyue Zhang, Siting Fu, Pengxiao Fu, Xiaowen Xu","doi":"10.1021/acs.langmuir.4c04663","DOIUrl":null,"url":null,"abstract":"The lateral flow assay is a strip-based analytical method for the portable and convenient detection of analytes of interest. It has the advantages of visual observation, autonomous sample flow, fast coloration time, minimal tedious operation procedures, and reliance on specialized instruments. However, the rough surface of the nitrocellulose membrane renders it difficult for the immobilized nucleic acids to remain in an ordered arrangement, and the immobilized nucleic acids are also liable to be digested in a complex matrix, inducing limited sensitivity and anti-interference. In this work, we demonstrate that the decoration of DNA nanostructures on lateral flow strips can improve assay sensitivity and anti-interference in comparison with commonly studied single-stranded DNA-disposed strips. DNA nanostructures enable probes to be more orderly and arranged on the strip and provide protection. Using adenosine 5′-triphosphate (ATP) as an analyte, a DNA tetrahedron reformative lateral flow strip has increased sensitivity and improved reliability in detection. The DNA nanostructure-decorated lateral flow strip is further successfully applied for ATP detection in real samples, such as bacterium testing and tableware cleanliness checking, by detection of the ATP content therein.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"48 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04663","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The lateral flow assay is a strip-based analytical method for the portable and convenient detection of analytes of interest. It has the advantages of visual observation, autonomous sample flow, fast coloration time, minimal tedious operation procedures, and reliance on specialized instruments. However, the rough surface of the nitrocellulose membrane renders it difficult for the immobilized nucleic acids to remain in an ordered arrangement, and the immobilized nucleic acids are also liable to be digested in a complex matrix, inducing limited sensitivity and anti-interference. In this work, we demonstrate that the decoration of DNA nanostructures on lateral flow strips can improve assay sensitivity and anti-interference in comparison with commonly studied single-stranded DNA-disposed strips. DNA nanostructures enable probes to be more orderly and arranged on the strip and provide protection. Using adenosine 5′-triphosphate (ATP) as an analyte, a DNA tetrahedron reformative lateral flow strip has increased sensitivity and improved reliability in detection. The DNA nanostructure-decorated lateral flow strip is further successfully applied for ATP detection in real samples, such as bacterium testing and tableware cleanliness checking, by detection of the ATP content therein.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信