Fragkiskos Tzirakis, Luis A. Diaz, Ioannis Chararas, Daniel Molina Montes de Oca, Zeyu Zhao, Panos Seferlis, Ioannis Tsivintzelis, Athanasios I. Papadopoulos
{"title":"Selection of solvents for integrated CO2 absorption and electrochemical reduction systems","authors":"Fragkiskos Tzirakis, Luis A. Diaz, Ioannis Chararas, Daniel Molina Montes de Oca, Zeyu Zhao, Panos Seferlis, Ioannis Tsivintzelis, Athanasios I. Papadopoulos","doi":"10.1002/aic.18734","DOIUrl":null,"url":null,"abstract":"Solvent-based electrochemical CO<sub>2</sub> reduction (CO<sub>2</sub>R) enables the production of chemicals or fuels using CO<sub>2</sub> from a preceding absorption process. Employing previously tested CO<sub>2</sub> capture solvents does not ensure their suitability for either CO<sub>2</sub>R or integrated CO<sub>2</sub> absorption-reduction. We propose solvent selection criteria that include the CO<sub>2</sub> solubility, kinetic constant, ionic conductivity, concentration of the bicarbonate, carbamate, and solvent cation in the CO<sub>2</sub>-loaded solution, and sustainability indicators. They are implemented for solvent selection (a) from novel, aqueous mixtures of <i>N</i>-methylcyclohexylamine (MCA) with piperazine (PZ), 2-amino-2-methyl-1-propanol (AMP), potassium hydroxide (KOH), and potassium chloride (KCl) and (b) from aqueous monoethanolamine (MEA), AMP, KOH, MCA, and PZ solutions. Versions of a modified Kent-Eisenberg model for strong bases, carbamate, and non-carbamate-forming amine solutions are developed and parameterized through experimental equilibrium measurements. CO<sub>2</sub>R experimental results are presented for solutions of KOH and MCA + KOH, as these indicate desired trade-offs for CO<sub>2</sub> absorption and reduction.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"3 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18734","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Solvent-based electrochemical CO2 reduction (CO2R) enables the production of chemicals or fuels using CO2 from a preceding absorption process. Employing previously tested CO2 capture solvents does not ensure their suitability for either CO2R or integrated CO2 absorption-reduction. We propose solvent selection criteria that include the CO2 solubility, kinetic constant, ionic conductivity, concentration of the bicarbonate, carbamate, and solvent cation in the CO2-loaded solution, and sustainability indicators. They are implemented for solvent selection (a) from novel, aqueous mixtures of N-methylcyclohexylamine (MCA) with piperazine (PZ), 2-amino-2-methyl-1-propanol (AMP), potassium hydroxide (KOH), and potassium chloride (KCl) and (b) from aqueous monoethanolamine (MEA), AMP, KOH, MCA, and PZ solutions. Versions of a modified Kent-Eisenberg model for strong bases, carbamate, and non-carbamate-forming amine solutions are developed and parameterized through experimental equilibrium measurements. CO2R experimental results are presented for solutions of KOH and MCA + KOH, as these indicate desired trade-offs for CO2 absorption and reduction.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.