Peng Kang, Yaqing Pan, Jinpeng Hu, Xuan Qu, Qiubo Ji, Chanyu Zhuang, Yufeng Ren, Jun Zhou, Tianjun Wei
{"title":"Straw mulch and orchard grass mediate soil microbial nutrient acquisition and microbial community composition in Ziziphus Jujuba orchard","authors":"Peng Kang, Yaqing Pan, Jinpeng Hu, Xuan Qu, Qiubo Ji, Chanyu Zhuang, Yufeng Ren, Jun Zhou, Tianjun Wei","doi":"10.1007/s11104-024-07144-1","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Aims</h3><p>The utilization of straw mulch and orchard grass in <i>Ziziphus Jujuba</i> orchards significantly influenced soil resource effectiveness, altering soil microbial metabolic limitations and enhancing nutrient accumulation. However, the response of soil microbial community composition to soil nutrient stoichiometry imbalance in <i>Z. jujuba</i> ‘Lingwuchangzao’ orchards is not clear.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>This study investigated stoichiometric characteristics of soil nutrient resources, microbial biomass, and extracellular enzyme activities. Meanwhile, it was combined with soil microbial community diversity and composition under different management practices in <i>Z. jujuba</i> orchards in the arid zone of northern China.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Straw mulch and orchard grass management reduced C:N imbalance, decreased nitrogen limitation and nitrogen use efficiency, and increased soil carbon limitation. These management practices also increased soil microbial diversity (eg. Shannon and ACE indices), with significant between-group differences by non-metric multidimensional scaling analysis. These differences were more significantly affected by relative carbon and nitrogen limitations. Relative carbon and nitrogen limitations were significantly correlated with Proteobacteria, Acidobacteriota, Ascomycota, and Mortierellomycota. In addition, straw mulch and orchard grass management increased the connectivity and complexity of the soil bacterial-fungal co-occurrence network. Random forest analysis further indicated the importance of microbial community diversity and dominant phyla to environmental change. Partial least squares path modeling revealed that changes in soil stoichiometric imbalance had direct or indirect effects on microbial ecoenzymatic stoichiometry, metabolic limitation, nutrient utilization efficiency, and community composition.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>The interrelationships between soil nutrient stoichiometric imbalances and microbial communities under straw mulch and orchard grass management in <i>Z. jujuba</i> orchard can improve soil ecological management practices in arid regions.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"45 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-07144-1","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Aims
The utilization of straw mulch and orchard grass in Ziziphus Jujuba orchards significantly influenced soil resource effectiveness, altering soil microbial metabolic limitations and enhancing nutrient accumulation. However, the response of soil microbial community composition to soil nutrient stoichiometry imbalance in Z. jujuba ‘Lingwuchangzao’ orchards is not clear.
Methods
This study investigated stoichiometric characteristics of soil nutrient resources, microbial biomass, and extracellular enzyme activities. Meanwhile, it was combined with soil microbial community diversity and composition under different management practices in Z. jujuba orchards in the arid zone of northern China.
Results
Straw mulch and orchard grass management reduced C:N imbalance, decreased nitrogen limitation and nitrogen use efficiency, and increased soil carbon limitation. These management practices also increased soil microbial diversity (eg. Shannon and ACE indices), with significant between-group differences by non-metric multidimensional scaling analysis. These differences were more significantly affected by relative carbon and nitrogen limitations. Relative carbon and nitrogen limitations were significantly correlated with Proteobacteria, Acidobacteriota, Ascomycota, and Mortierellomycota. In addition, straw mulch and orchard grass management increased the connectivity and complexity of the soil bacterial-fungal co-occurrence network. Random forest analysis further indicated the importance of microbial community diversity and dominant phyla to environmental change. Partial least squares path modeling revealed that changes in soil stoichiometric imbalance had direct or indirect effects on microbial ecoenzymatic stoichiometry, metabolic limitation, nutrient utilization efficiency, and community composition.
Conclusions
The interrelationships between soil nutrient stoichiometric imbalances and microbial communities under straw mulch and orchard grass management in Z. jujuba orchard can improve soil ecological management practices in arid regions.
期刊介绍:
Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.