The yield and phosphorus content of maize intercropped with faba bean are enhanced by belowground interspecies interactions at low phosphorus input and by aboveground interactions at high phosphorus input
Yi Zhang, Wenhao Zhu, Lanyan Luo, Hans Lambers, Chaochun Zhang
{"title":"The yield and phosphorus content of maize intercropped with faba bean are enhanced by belowground interspecies interactions at low phosphorus input and by aboveground interactions at high phosphorus input","authors":"Yi Zhang, Wenhao Zhu, Lanyan Luo, Hans Lambers, Chaochun Zhang","doi":"10.1007/s11104-024-07168-7","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Aims</h3><p>Many studies used physical barriers to separate the roots of different species to dissect the contributions of above- and below-ground interspecies interactions to yield and phosphorus (P) uptake. However, the extent to which the presence of barriers itself alters these contributions remains unknown.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>The field study, conducted in 2010 and 2011, used root barriers in both sole cropped and intercropped maize at two P levels. We examined the contributions of interspecies interactions to yield, biomass and P content in all treatments. The field experiment followed a split plot design with two P levels (P0: 0 kg ha<sup>−1</sup>, and P35: 35 kg P ha<sup>−1</sup>), three cropping systems (sole maize, sole faba bean and maize/faba bean intercropping), and two types of root separation (solid barrier -SB- and no barrier -NB-).</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The presence of a solid barrier negatively impacted the yield of sole maize, reducing it by 26% in 2010 and by 56% in 2011 compared with conditions without a barrier, indicating that the barrier itself adversely affected the growth of sole maize. Notwithstanding the barrier's influence, the belowground interspecies interactions were the primary contributors to the increased grain yield and P content observed in maize/faba bean intercropping under the P0 treatment. In contrast, aboveground interactions were more significant in enhancing the performance of the intercropping system at the P35 treatment.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Phosphorus fertilization diminished the effects of belowground interspecies interactions while amplifying the impact of aboveground interspecies interaction on the advantages of intercropping, regarding grain yield and P uptake.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"2 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-07168-7","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Aims
Many studies used physical barriers to separate the roots of different species to dissect the contributions of above- and below-ground interspecies interactions to yield and phosphorus (P) uptake. However, the extent to which the presence of barriers itself alters these contributions remains unknown.
Methods
The field study, conducted in 2010 and 2011, used root barriers in both sole cropped and intercropped maize at two P levels. We examined the contributions of interspecies interactions to yield, biomass and P content in all treatments. The field experiment followed a split plot design with two P levels (P0: 0 kg ha−1, and P35: 35 kg P ha−1), three cropping systems (sole maize, sole faba bean and maize/faba bean intercropping), and two types of root separation (solid barrier -SB- and no barrier -NB-).
Results
The presence of a solid barrier negatively impacted the yield of sole maize, reducing it by 26% in 2010 and by 56% in 2011 compared with conditions without a barrier, indicating that the barrier itself adversely affected the growth of sole maize. Notwithstanding the barrier's influence, the belowground interspecies interactions were the primary contributors to the increased grain yield and P content observed in maize/faba bean intercropping under the P0 treatment. In contrast, aboveground interactions were more significant in enhancing the performance of the intercropping system at the P35 treatment.
Conclusions
Phosphorus fertilization diminished the effects of belowground interspecies interactions while amplifying the impact of aboveground interspecies interaction on the advantages of intercropping, regarding grain yield and P uptake.
期刊介绍:
Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.