R. Aiudi, R. Pacelli, P. Baglioni, A. Vezzani, R. Burioni, P. Rotondo
{"title":"Local kernel renormalization as a mechanism for feature learning in overparametrized convolutional neural networks","authors":"R. Aiudi, R. Pacelli, P. Baglioni, A. Vezzani, R. Burioni, P. Rotondo","doi":"10.1038/s41467-024-55229-3","DOIUrl":null,"url":null,"abstract":"<p>Empirical evidence shows that fully-connected neural networks in the infinite-width limit (lazy training) eventually outperform their finite-width counterparts in most computer vision tasks; on the other hand, modern architectures with convolutional layers often achieve optimal performances in the finite-width regime. In this work, we present a theoretical framework that provides a rationale for these differences in one-hidden-layer networks; we derive an effective action in the so-called proportional limit for an architecture with one convolutional hidden layer and compare it with the result available for fully-connected networks. Remarkably, we identify a completely different form of kernel renormalization: whereas the kernel of the fully-connected architecture is just globally renormalized by a single scalar parameter, the convolutional kernel undergoes a local renormalization, meaning that the network can select the local components that will contribute to the final prediction in a data-dependent way. This finding highlights a simple mechanism for feature learning that can take place in overparametrized shallow convolutional neural networks, but not in shallow fully-connected architectures or in locally connected neural networks without weight sharing.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"91 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55229-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Empirical evidence shows that fully-connected neural networks in the infinite-width limit (lazy training) eventually outperform their finite-width counterparts in most computer vision tasks; on the other hand, modern architectures with convolutional layers often achieve optimal performances in the finite-width regime. In this work, we present a theoretical framework that provides a rationale for these differences in one-hidden-layer networks; we derive an effective action in the so-called proportional limit for an architecture with one convolutional hidden layer and compare it with the result available for fully-connected networks. Remarkably, we identify a completely different form of kernel renormalization: whereas the kernel of the fully-connected architecture is just globally renormalized by a single scalar parameter, the convolutional kernel undergoes a local renormalization, meaning that the network can select the local components that will contribute to the final prediction in a data-dependent way. This finding highlights a simple mechanism for feature learning that can take place in overparametrized shallow convolutional neural networks, but not in shallow fully-connected architectures or in locally connected neural networks without weight sharing.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.