High-performance ternary logic circuits and neural networks based on carbon nanotube source-gating transistors

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xuehao Zhu, Meiqi Xi, Jianyu Wang, Panpan Zhang, Yi Li, Xiao Luo, Lan Bai, Xingxing Chen, Lian-mao Peng, Yu Cao, Qiliang Li, Xuelei Liang
{"title":"High-performance ternary logic circuits and neural networks based on carbon nanotube source-gating transistors","authors":"Xuehao Zhu, Meiqi Xi, Jianyu Wang, Panpan Zhang, Yi Li, Xiao Luo, Lan Bai, Xingxing Chen, Lian-mao Peng, Yu Cao, Qiliang Li, Xuelei Liang","doi":"10.1126/sciadv.adt1909","DOIUrl":null,"url":null,"abstract":"Multi-valued logics (MVLs) offer higher information density, reduced circuit and interconnect complexity, lower power dissipation, and faster speed over conventional binary logic system. Recent advancement in MVL research, particularly with emerging low-dimensional materials, suggests that breakthroughs may be imminent if multistates transistors can be fabricated controllably for large-scale integration. Here, a concept of source-gating transistors (SGTs) is developed and realized using carbon nanotubes (CNTs). By extending the source electrode into the channel of conventional CNT transistors, a controllable p-n homojunction is formed, allowing CNT-SGTs to reliably switch between three distinct states. Capitalizing on the straightforward fabrication process of CNT-SGTs, ternary inverters, NMIN and NMAX logic gates, ternary SRAM cells, and a ternary neural network achieving 100% image classification accuracy have been successfully implemented. This study represents the most advanced and highest-performing ternary circuits realized with low-dimensional materials to date. This progress highlights the potential of CNT-SGTs in driving the future of MVL architectures.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"28 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adt1909","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-valued logics (MVLs) offer higher information density, reduced circuit and interconnect complexity, lower power dissipation, and faster speed over conventional binary logic system. Recent advancement in MVL research, particularly with emerging low-dimensional materials, suggests that breakthroughs may be imminent if multistates transistors can be fabricated controllably for large-scale integration. Here, a concept of source-gating transistors (SGTs) is developed and realized using carbon nanotubes (CNTs). By extending the source electrode into the channel of conventional CNT transistors, a controllable p-n homojunction is formed, allowing CNT-SGTs to reliably switch between three distinct states. Capitalizing on the straightforward fabrication process of CNT-SGTs, ternary inverters, NMIN and NMAX logic gates, ternary SRAM cells, and a ternary neural network achieving 100% image classification accuracy have been successfully implemented. This study represents the most advanced and highest-performing ternary circuits realized with low-dimensional materials to date. This progress highlights the potential of CNT-SGTs in driving the future of MVL architectures.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信