Revealed mechanism of 3D-open-microarray boosting exoelectrogens Geobacter enrichment and extracellular electron transfer for high power generation in microbial fuel cells

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Da Liu, Chao-qun Xu, Wen-kai Fang, Cheng-yu Li
{"title":"Revealed mechanism of 3D-open-microarray boosting exoelectrogens Geobacter enrichment and extracellular electron transfer for high power generation in microbial fuel cells","authors":"Da Liu, Chao-qun Xu, Wen-kai Fang, Cheng-yu Li","doi":"10.1016/j.biortech.2025.132049","DOIUrl":null,"url":null,"abstract":"The<ce:hsp sp=\"0.25\"></ce:hsp>anode enables raised microbial fuel cells (MFCs) performance via in-situ growth electroactive material. However, the role of fabricated microstructures in electroactive bacteria loading and extracellular electron transfer (EET) has been paid less attention. Here, MoS2 nanosheets are custom grown on carbon cloth to construct anode models with diverse surface microstructures. Surprisingly, the 3D-MoS2/NS-CC anode only 0.85 d enables the MFC to be started and achieves a maximum power density of 3.85 W/m<ce:sup loc=\"post\">2</ce:sup>, which is significantly faster and higher than that of 2D-MoS2/NS-CC (3.6 d, 2.75 W/m<ce:sup loc=\"post\">2</ce:sup>) and CC (4.46 d, 1.98 W/m<ce:sup loc=\"post\">2</ce:sup>). As for the mechanism of 3D-MoS2/NSCC<ce:hsp sp=\"0.25\"></ce:hsp>boosting MFC performance, this is attributed to the 3D-open-microarray preventing electroactive bacteria from shedding and facilitating to the establishment of excellent EET channels through the formed hybrid cell-electrode systems and Geobacter enrichment of up to 86.1 %. This research provides promising guidance for integrating nanomaterials and architecture to construct high-performance anodes in MFCs.","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"24 1","pages":""},"PeriodicalIF":9.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2025.132049","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Theanode enables raised microbial fuel cells (MFCs) performance via in-situ growth electroactive material. However, the role of fabricated microstructures in electroactive bacteria loading and extracellular electron transfer (EET) has been paid less attention. Here, MoS2 nanosheets are custom grown on carbon cloth to construct anode models with diverse surface microstructures. Surprisingly, the 3D-MoS2/NS-CC anode only 0.85 d enables the MFC to be started and achieves a maximum power density of 3.85 W/m2, which is significantly faster and higher than that of 2D-MoS2/NS-CC (3.6 d, 2.75 W/m2) and CC (4.46 d, 1.98 W/m2). As for the mechanism of 3D-MoS2/NSCCboosting MFC performance, this is attributed to the 3D-open-microarray preventing electroactive bacteria from shedding and facilitating to the establishment of excellent EET channels through the formed hybrid cell-electrode systems and Geobacter enrichment of up to 86.1 %. This research provides promising guidance for integrating nanomaterials and architecture to construct high-performance anodes in MFCs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信