Evolution of the western North Pacific subtropical high and impact of Asian precipitation from spring to summer

IF 4.5 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Wencai Liu, Ning Shi, Huijun Wang
{"title":"Evolution of the western North Pacific subtropical high and impact of Asian precipitation from spring to summer","authors":"Wencai Liu, Ning Shi, Huijun Wang","doi":"10.1016/j.atmosres.2025.107909","DOIUrl":null,"url":null,"abstract":"Based on the JRA55 monthly reanalysis datasets and simplified numerical experiments, this study identifies several key regions in which precipitation has an evident influence on the seasonal march of the western North Pacific Subtropical High (WNPSH) from spring to summer. In May, there is an evident positive feedback between the developed trough low and the increased precipitation mainly around the Bay of Bengal with the aid of the thermal supply from the underlying ocean. This positive feedback facilitates the breakdown of the SH and the formation of the WNPSH as an independent circulation system. In June, Meiyu precipitation occurs and in turn stimulates an anticyclonic anomaly in the northwestern Pacific, which contributes as much as approximately 77 % to the first northward advance of the WNPSH therein. The second northward advance of the WNPSH in July is closely associated with the increased precipitation around Indian subcontinent, as the latter can explain as much as approximately 50 % of the observed vorticity anomaly over East Asia. After August, the precipitation increment pattern is almost reversed with respect to that during the previous months. Accordingly, the WNPSH retreats southward and gradually merges with the Iran High, restoring to a zonally uniform distribution pattern.","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"84 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.atmosres.2025.107909","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the JRA55 monthly reanalysis datasets and simplified numerical experiments, this study identifies several key regions in which precipitation has an evident influence on the seasonal march of the western North Pacific Subtropical High (WNPSH) from spring to summer. In May, there is an evident positive feedback between the developed trough low and the increased precipitation mainly around the Bay of Bengal with the aid of the thermal supply from the underlying ocean. This positive feedback facilitates the breakdown of the SH and the formation of the WNPSH as an independent circulation system. In June, Meiyu precipitation occurs and in turn stimulates an anticyclonic anomaly in the northwestern Pacific, which contributes as much as approximately 77 % to the first northward advance of the WNPSH therein. The second northward advance of the WNPSH in July is closely associated with the increased precipitation around Indian subcontinent, as the latter can explain as much as approximately 50 % of the observed vorticity anomaly over East Asia. After August, the precipitation increment pattern is almost reversed with respect to that during the previous months. Accordingly, the WNPSH retreats southward and gradually merges with the Iran High, restoring to a zonally uniform distribution pattern.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Research
Atmospheric Research 地学-气象与大气科学
CiteScore
9.40
自引率
10.90%
发文量
460
审稿时长
47 days
期刊介绍: The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信