Improving the off-design modeling of a commercial absorption chiller

IF 9.9 1区 工程技术 Q1 ENERGY & FUELS
Juan Manuel González, Alvaro Antonio Villa Ochoa, José M. Cardemil, Felipe Godoy, Mónica Zamora Zapata
{"title":"Improving the off-design modeling of a commercial absorption chiller","authors":"Juan Manuel González, Alvaro Antonio Villa Ochoa, José M. Cardemil, Felipe Godoy, Mónica Zamora Zapata","doi":"10.1016/j.enconman.2024.119470","DOIUrl":null,"url":null,"abstract":"Modeling a commercial absorption chiller accurately is essential for better integrating and optimizing their operation, especially in off-design conditions. Hence, in this work, a novel model based on the principles of mass and energy conservation was developed, incorporating three improvements for a single-effect LiBr–H<ce:inf loc=\"post\">2</ce:inf>O absorption chiller, corresponding to (i) heat loss to the environment, (ii) heat transfer coefficient dependence on flow rate, and (iii) a falling film evaporator model. As a study case, the improved model was applied to simulate the off-design behavior of the Yazaki WFC-SC10 absorption chiller, using available manufacturer data. The effect of hot and chilled water temperature and hot water flow rate on performance were analyzed. Improvement (i) corrects the design point cooling capacity and heat input predictions to 0.03% and 0.04% error, respectively, far lower than the basic model (3.7% and 8.8%), while adding (ii) proves enough to enhance the off-design performance computation to excellent precision within 40%–100% of the rated hot water flow rate. Lastly, improvement (iii) allows the model to exhibit the performance-degrading partial wetting and overflow operating regimes at the evaporator, maintaining more realistic model predictions in off-design operation. The total model error in capacity and heat input with respect to manufacturer data (MAPE) decreased by 68% and 54% respectively, with respect to the hot water temperature, and by 94% and 82% with respect to its associated flow rate. Overall, this work sets a benchmark in commercial absorption chiller modeling accuracy, and particularly to the atypical behavior of the WFC-SC10.","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"67 1","pages":""},"PeriodicalIF":9.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.enconman.2024.119470","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Modeling a commercial absorption chiller accurately is essential for better integrating and optimizing their operation, especially in off-design conditions. Hence, in this work, a novel model based on the principles of mass and energy conservation was developed, incorporating three improvements for a single-effect LiBr–H2O absorption chiller, corresponding to (i) heat loss to the environment, (ii) heat transfer coefficient dependence on flow rate, and (iii) a falling film evaporator model. As a study case, the improved model was applied to simulate the off-design behavior of the Yazaki WFC-SC10 absorption chiller, using available manufacturer data. The effect of hot and chilled water temperature and hot water flow rate on performance were analyzed. Improvement (i) corrects the design point cooling capacity and heat input predictions to 0.03% and 0.04% error, respectively, far lower than the basic model (3.7% and 8.8%), while adding (ii) proves enough to enhance the off-design performance computation to excellent precision within 40%–100% of the rated hot water flow rate. Lastly, improvement (iii) allows the model to exhibit the performance-degrading partial wetting and overflow operating regimes at the evaporator, maintaining more realistic model predictions in off-design operation. The total model error in capacity and heat input with respect to manufacturer data (MAPE) decreased by 68% and 54% respectively, with respect to the hot water temperature, and by 94% and 82% with respect to its associated flow rate. Overall, this work sets a benchmark in commercial absorption chiller modeling accuracy, and particularly to the atypical behavior of the WFC-SC10.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Conversion and Management
Energy Conversion and Management 工程技术-力学
CiteScore
19.00
自引率
11.50%
发文量
1304
审稿时长
17 days
期刊介绍: The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics. The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信