{"title":"Pd-catalyzed Asymmetric Hydrogenolysis Rearrangement of Allylic Esters to Access Axially Chiral Olefins","authors":"Bing-Ru Shao, Wen-Feng Jiang, Chen Wang, lei shi","doi":"10.1002/anie.202421287","DOIUrl":null,"url":null,"abstract":"The Pd-catalyzed asymmetric hydrogenolysis rearrangement of allylic acetates using (s-Bu)3BHK has been described, achieving the synthesis of axially chiral alkylidene cycloalkanes with excellent enantioselectivities (up to 99% ee) and a wide substrate scope (30 examples of cyclohexanes and cyclobutanes). To the best of our knowledge, this is the first time to achieve synthesis of axially chiral olefins via asymmetric hydrogenolysis of allylic acetates. This methodology not only offers a novel synthetic pathway for non-atropisomeric axially chiral structures but also highlights the potential of asymmetric hydrogenolysis as a powerful tool in synthetic organic chemistry.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"24 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202421287","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Pd-catalyzed asymmetric hydrogenolysis rearrangement of allylic acetates using (s-Bu)3BHK has been described, achieving the synthesis of axially chiral alkylidene cycloalkanes with excellent enantioselectivities (up to 99% ee) and a wide substrate scope (30 examples of cyclohexanes and cyclobutanes). To the best of our knowledge, this is the first time to achieve synthesis of axially chiral olefins via asymmetric hydrogenolysis of allylic acetates. This methodology not only offers a novel synthetic pathway for non-atropisomeric axially chiral structures but also highlights the potential of asymmetric hydrogenolysis as a powerful tool in synthetic organic chemistry.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.