{"title":"Continuous conversion of flue gas into syngas by a bipolar membrane-integrated single-cell cyclic system","authors":"Dayin He, Xianhui Ma, Huang Zhou, Yu Zhang, Yuen Wu","doi":"10.1016/j.joule.2024.12.007","DOIUrl":null,"url":null,"abstract":"Electrochemical CO<sub>2</sub> reduction reaction (ECO<sub>2</sub>RR) usually requires high-purity CO<sub>2</sub> gas feeding. However, capturing CO<sub>2</sub> from flue gas is still a cost- and energy-intensive process. Here, we design a bipolar membrane-integrated single-cell cyclic system that directly converts simulated flue gas into syngas. The system features a circulating gas-liquid mixed flow between the anode and cathode in an integrated cell, enabling it to simultaneously absorb CO<sub>2</sub> from flue gas and convert captured CO<sub>2</sub> into syngas. At an industrial current density of 250 mA/cm<sup>2</sup>, we successfully decrease the CO<sub>2</sub> concentration in flue gas from 15% to 4.3% (with a 61.7% CO<sub>2</sub> capture efficiency) and obtain high-selectivity (up to 100%) syngas (H<sub>2</sub>:CO = 3:1). Moreover, this cell has excellent tolerance to SO<sub>x</sub> and NO<sub>x</sub> due to the Ni single-atom catalyst in the cathode compared with previous studies. These results pave the way for low-concentration carbon dioxide conversion and promote the application of ECO<sub>2</sub>RR technology.","PeriodicalId":343,"journal":{"name":"Joule","volume":"22 1","pages":""},"PeriodicalIF":38.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2024.12.007","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical CO2 reduction reaction (ECO2RR) usually requires high-purity CO2 gas feeding. However, capturing CO2 from flue gas is still a cost- and energy-intensive process. Here, we design a bipolar membrane-integrated single-cell cyclic system that directly converts simulated flue gas into syngas. The system features a circulating gas-liquid mixed flow between the anode and cathode in an integrated cell, enabling it to simultaneously absorb CO2 from flue gas and convert captured CO2 into syngas. At an industrial current density of 250 mA/cm2, we successfully decrease the CO2 concentration in flue gas from 15% to 4.3% (with a 61.7% CO2 capture efficiency) and obtain high-selectivity (up to 100%) syngas (H2:CO = 3:1). Moreover, this cell has excellent tolerance to SOx and NOx due to the Ni single-atom catalyst in the cathode compared with previous studies. These results pave the way for low-concentration carbon dioxide conversion and promote the application of ECO2RR technology.
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.