Jin Zhao, Xiao-liang Ji, Jin-jiang He, Zhi-chao Hou, Yao Song, Hong-lei Zhu, Bing-rui Liu, Qiang Jia, Yi-shu Wang
{"title":"Effect of electric pulse auxiliary reflow soldering on the microstructure and properties of Sn58Bi/Cu solder joints","authors":"Jin Zhao, Xiao-liang Ji, Jin-jiang He, Zhi-chao Hou, Yao Song, Hong-lei Zhu, Bing-rui Liu, Qiang Jia, Yi-shu Wang","doi":"10.1007/s10853-024-10549-z","DOIUrl":null,"url":null,"abstract":"<div><p>The demand for high-computing-power AI chips in the consumer electronics market is driving the development of electronic packaging technology toward high-reliability packaging. The application of low melting point solder Sn58Bi in high-reliability 3D packages is currently facing issues of low toughness and poor in-service reliability. A new strategy differentiating the alloying of conventional solders has been proposed, which produced solder joints with improved microstructure and properties through electric pulse auxiliary reflow soldering of Sn58Bi/Cu solder joints. The electric pulse resulted in Bi-rich phases and different morphologies of pre-eutectic Sn in the solder joints via the incubation effect, improving the shear strength of the solder joints. This research provides a new strategy for improving the strength and reliability of Sn58Bi solder joints in advanced electronic interconnection.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 2","pages":"922 - 938"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-024-10549-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The demand for high-computing-power AI chips in the consumer electronics market is driving the development of electronic packaging technology toward high-reliability packaging. The application of low melting point solder Sn58Bi in high-reliability 3D packages is currently facing issues of low toughness and poor in-service reliability. A new strategy differentiating the alloying of conventional solders has been proposed, which produced solder joints with improved microstructure and properties through electric pulse auxiliary reflow soldering of Sn58Bi/Cu solder joints. The electric pulse resulted in Bi-rich phases and different morphologies of pre-eutectic Sn in the solder joints via the incubation effect, improving the shear strength of the solder joints. This research provides a new strategy for improving the strength and reliability of Sn58Bi solder joints in advanced electronic interconnection.
期刊介绍:
The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.