Closed-Form Approximate Solution for Thermo-Mechanical Performance Analysis of Thermoelectric Generators with Temperature-Dependent Material Properties by Differential Transform Method

IF 2.5 4区 工程技术 Q3 CHEMISTRY, PHYSICAL
Zou-Qing Tan, Kun Tao, Han Sun
{"title":"Closed-Form Approximate Solution for Thermo-Mechanical Performance Analysis of Thermoelectric Generators with Temperature-Dependent Material Properties by Differential Transform Method","authors":"Zou-Qing Tan,&nbsp;Kun Tao,&nbsp;Han Sun","doi":"10.1007/s10765-024-03489-y","DOIUrl":null,"url":null,"abstract":"<div><p>Thermoelectric materials play a significant role in the electronic industry and energy production. However, temperature-dependent material properties make the theoretical analysis challenging. This paper investigates the thermo-mechanical performance of thermoelectric generators with temperature-dependent material properties by differential transform method (DTM). The nonlinear distribution of temperature-dependent thermal conductivity, Seebeck coefficient, and electric resistivity are considered. DTM is used to construct analytical approximate solutions of the nonlinear differential equation governing the temperature distribution of the thermoelectric element. The thermal performance of the thermoelectric element including temperature distribution, temperature gradient, heat flux, power output per area, and energy conversion efficiency are predicted by DTM. And, the proposed method is utilized to analyze the thermal stress of the thermoelectric element. Compared with numerical solutions, the results indicate that DTM has a fast convergence speed and a high accuracy. The findings reveal that the maximum energy conversion efficiency and thermal stress enhance with the increase of temperature difference.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"46 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-024-03489-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Thermoelectric materials play a significant role in the electronic industry and energy production. However, temperature-dependent material properties make the theoretical analysis challenging. This paper investigates the thermo-mechanical performance of thermoelectric generators with temperature-dependent material properties by differential transform method (DTM). The nonlinear distribution of temperature-dependent thermal conductivity, Seebeck coefficient, and electric resistivity are considered. DTM is used to construct analytical approximate solutions of the nonlinear differential equation governing the temperature distribution of the thermoelectric element. The thermal performance of the thermoelectric element including temperature distribution, temperature gradient, heat flux, power output per area, and energy conversion efficiency are predicted by DTM. And, the proposed method is utilized to analyze the thermal stress of the thermoelectric element. Compared with numerical solutions, the results indicate that DTM has a fast convergence speed and a high accuracy. The findings reveal that the maximum energy conversion efficiency and thermal stress enhance with the increase of temperature difference.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
9.10%
发文量
179
审稿时长
5 months
期刊介绍: International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信