{"title":"Anticipating Solar Flares","authors":"Hugh Hudson","doi":"10.1007/s11207-024-02418-4","DOIUrl":null,"url":null,"abstract":"<div><p>Solar flares commonly have a “hot onset precursor event” (HOPE), detectable from soft X-ray observations. To detect this requires subtraction of pre-flare fluxes from the non-flaring Sun prior to the event, fitting an isothermal emission model to the flare excess fluxes by comparing the GOES passbands at 1 – 8 Å and 0.5 – 4 Å, and plotting the timewise evolution of the flare emission in a diagram of temperature vs. emission measure. The HOPE then appears as an initial “horizontal branch” in this diagram. It precedes the nonthermal impulsive phase of the flare and thus the flare peak in soft X-rays as well. We use this property to define a “flare anticipation index” (FAI), which can serve as an alert for observational programs aimed at solar flares based on near-real-time soft X-ray observations. This FAI gives lead times of a few minutes and produces very few false positive alerts, even for flare brightenings that are too weak to merit NOAA classification.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"300 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11207-024-02418-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-024-02418-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Solar flares commonly have a “hot onset precursor event” (HOPE), detectable from soft X-ray observations. To detect this requires subtraction of pre-flare fluxes from the non-flaring Sun prior to the event, fitting an isothermal emission model to the flare excess fluxes by comparing the GOES passbands at 1 – 8 Å and 0.5 – 4 Å, and plotting the timewise evolution of the flare emission in a diagram of temperature vs. emission measure. The HOPE then appears as an initial “horizontal branch” in this diagram. It precedes the nonthermal impulsive phase of the flare and thus the flare peak in soft X-rays as well. We use this property to define a “flare anticipation index” (FAI), which can serve as an alert for observational programs aimed at solar flares based on near-real-time soft X-ray observations. This FAI gives lead times of a few minutes and produces very few false positive alerts, even for flare brightenings that are too weak to merit NOAA classification.
期刊介绍:
Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.