{"title":"Water chemistry and estimation of local geochemical background values of elements in headwater streams of Ken–Betwa catchment of Yamuna River, India","authors":"Harish Kumar, Amrita Sarkar, Utsa Singh, Nisha Singh, Sumit Jain, Archisman Dutta","doi":"10.1007/s12665-024-12059-2","DOIUrl":null,"url":null,"abstract":"<div><p>The paper presents a geochemical approach to estimating the local background values of major ionic solutes and trace elements in headwater streams. Understanding the natural geochemical properties of each surface water body is essential for tracking environmental changes, identifying anthropogenic influences, and establishing baseline conditions for water quality management. This research aims to evaluate the elemental concentrations, water quality, and background values (BGVs) of stream water through systematic sampling, laboratory analysis, and hydrogeochemical and statistical interpretations. Water samples were analyzed for hydrochemical solutes such as major cations and anions using standard procedures, whereas concentrations of 44 trace elements, including heavy metals and metalloids, were determined using inductively coupled plasma mass spectrometry (ICP-MS). Water samples were collected in places that were unaffected by industrial or mining activity, as well as in generally clean areas. Statistical techniques were employed to distinguish between natural variability and potential human impacts. Hence, the mean + 2SD was then used to determine the BGV. In addition, spatial distribution maps of hydrochemical parameters were used to identify potential sources of contamination. The obtained concentrations were then compared to global water quality standards. The calculated BGVs revealed critical concentration levels of Al and Fe that surpassed the maximum limitations set by the legislation. These significantly elevated levels may constitute a health risk to people, particularly in rural locations where they rely solely on stream water and the aquatic environment. Heavy metals and metalloids including As, Cr, Cd, Pb, Ni, Hg, Zn, Cu, and Mn are found in trace amounts or below detection limits and pose no threat to the environment or human health. The levels of dissolved REEs in water samples are relatively low, indicating a geologic source. The proposed BGVs will serve as a reference to determine the impact of human activities (such as industrial discharges, agricultural runoff, and urban expansion) on water quality at the local level. The geochemical study of water also provides a robust framework for assessing the health of public and aquatic ecosystems and designing effective environmental management plans.</p></div>","PeriodicalId":542,"journal":{"name":"Environmental Earth Sciences","volume":"84 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Earth Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s12665-024-12059-2","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The paper presents a geochemical approach to estimating the local background values of major ionic solutes and trace elements in headwater streams. Understanding the natural geochemical properties of each surface water body is essential for tracking environmental changes, identifying anthropogenic influences, and establishing baseline conditions for water quality management. This research aims to evaluate the elemental concentrations, water quality, and background values (BGVs) of stream water through systematic sampling, laboratory analysis, and hydrogeochemical and statistical interpretations. Water samples were analyzed for hydrochemical solutes such as major cations and anions using standard procedures, whereas concentrations of 44 trace elements, including heavy metals and metalloids, were determined using inductively coupled plasma mass spectrometry (ICP-MS). Water samples were collected in places that were unaffected by industrial or mining activity, as well as in generally clean areas. Statistical techniques were employed to distinguish between natural variability and potential human impacts. Hence, the mean + 2SD was then used to determine the BGV. In addition, spatial distribution maps of hydrochemical parameters were used to identify potential sources of contamination. The obtained concentrations were then compared to global water quality standards. The calculated BGVs revealed critical concentration levels of Al and Fe that surpassed the maximum limitations set by the legislation. These significantly elevated levels may constitute a health risk to people, particularly in rural locations where they rely solely on stream water and the aquatic environment. Heavy metals and metalloids including As, Cr, Cd, Pb, Ni, Hg, Zn, Cu, and Mn are found in trace amounts or below detection limits and pose no threat to the environment or human health. The levels of dissolved REEs in water samples are relatively low, indicating a geologic source. The proposed BGVs will serve as a reference to determine the impact of human activities (such as industrial discharges, agricultural runoff, and urban expansion) on water quality at the local level. The geochemical study of water also provides a robust framework for assessing the health of public and aquatic ecosystems and designing effective environmental management plans.
期刊介绍:
Environmental Earth Sciences is an international multidisciplinary journal concerned with all aspects of interaction between humans, natural resources, ecosystems, special climates or unique geographic zones, and the earth:
Water and soil contamination caused by waste management and disposal practices
Environmental problems associated with transportation by land, air, or water
Geological processes that may impact biosystems or humans
Man-made or naturally occurring geological or hydrological hazards
Environmental problems associated with the recovery of materials from the earth
Environmental problems caused by extraction of minerals, coal, and ores, as well as oil and gas, water and alternative energy sources
Environmental impacts of exploration and recultivation – Environmental impacts of hazardous materials
Management of environmental data and information in data banks and information systems
Dissemination of knowledge on techniques, methods, approaches and experiences to improve and remediate the environment
In pursuit of these topics, the geoscientific disciplines are invited to contribute their knowledge and experience. Major disciplines include: hydrogeology, hydrochemistry, geochemistry, geophysics, engineering geology, remediation science, natural resources management, environmental climatology and biota, environmental geography, soil science and geomicrobiology.