A comprehensive study of simulated cyclic indentation response of linear viscoelastic materials

IF 1.9 4区 工程技术 Q3 MECHANICS
Olga Smerdova
{"title":"A comprehensive study of simulated cyclic indentation response of linear viscoelastic materials","authors":"Olga Smerdova","doi":"10.1007/s00161-024-01352-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents and analyzes the cyclic indentation response of a linear viscoelastic material over the entire time range of the relaxation processes using conical or spherical indenters. Finite Element simulations of cyclic indentation on two Generalized Maxwell materials with different relaxation spectra were performed. A variety of cyclic responses to indentation were generated and analyzed using an analytical method based on elastic contact. It is shown that the elastic contact depth and contact stiffness from the loading curves should be used to identify the relaxation modulus corresponding to the time of loading. The stabilization of the loop has also been studied through the energy ratio, a parameter that describes the evolution of the dissipated energy with cycles. A simple time shift between cyclic creep and monotonous indentation creep of a linear viscoelastic material is demonstrated. The simulated indentation curves and the parameters derived from them were found to be qualitatively similar to the experimental cyclic indentation data on HDPE polymer at different loading rates. Assuming that the first loading is affected by plasticity due to the use of a sharp indenter, a correction was suggested to obtain the elastic relaxation modulus from the experiments. The values of the modulus identified in this way for HDPE compared well with the relaxation modulus identified for this material from previous cyclic tensile experiments. The small discrepancy was attributed to the non-linear viscoelasticity or the viscoplasticity of the polymer.\n</p></div>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"37 2","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00161-024-01352-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents and analyzes the cyclic indentation response of a linear viscoelastic material over the entire time range of the relaxation processes using conical or spherical indenters. Finite Element simulations of cyclic indentation on two Generalized Maxwell materials with different relaxation spectra were performed. A variety of cyclic responses to indentation were generated and analyzed using an analytical method based on elastic contact. It is shown that the elastic contact depth and contact stiffness from the loading curves should be used to identify the relaxation modulus corresponding to the time of loading. The stabilization of the loop has also been studied through the energy ratio, a parameter that describes the evolution of the dissipated energy with cycles. A simple time shift between cyclic creep and monotonous indentation creep of a linear viscoelastic material is demonstrated. The simulated indentation curves and the parameters derived from them were found to be qualitatively similar to the experimental cyclic indentation data on HDPE polymer at different loading rates. Assuming that the first loading is affected by plasticity due to the use of a sharp indenter, a correction was suggested to obtain the elastic relaxation modulus from the experiments. The values of the modulus identified in this way for HDPE compared well with the relaxation modulus identified for this material from previous cyclic tensile experiments. The small discrepancy was attributed to the non-linear viscoelasticity or the viscoplasticity of the polymer.

线性粘弹性材料模拟循环压痕响应的综合研究
本文介绍并分析了线性粘弹性材料在使用锥形或球形压痕松弛过程的整个时间范围内的循环压痕响应。对两种具有不同弛豫谱的广义Maxwell材料进行了循环压痕有限元模拟。采用基于弹性接触的解析方法,生成并分析了压痕作用下的各种循环响应。结果表明,应利用加载曲线中的弹性接触深度和接触刚度来确定加载时间对应的松弛模量。通过能量比(描述耗散能量随周期变化的参数)对回路的稳定性进行了研究。证明了线性粘弹性材料在循环蠕变和单调压痕蠕变之间的简单时移。模拟的压痕曲线及其参数与HDPE聚合物在不同加载速率下的循环压痕实验数据定性相似。假设第一次加载由于使用锋利的压头而受到塑性的影响,建议对实验结果进行修正,以获得弹性松弛模量。用这种方法确定的HDPE的模量值与从以前的循环拉伸实验中确定的这种材料的松弛模量相比较。这种小的差异归因于聚合物的非线性粘弹性或粘塑性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
15.40%
发文量
92
审稿时长
>12 weeks
期刊介绍: This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena. Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信