Deok Jae Lee, Sung Jong Lee, Guyoung Kang, Minkoo Park, Young Hoon Joo, Jae Ho Yeom, Namhyun Chung
{"title":"Performance evaluation of biowashing pilot reactor for remediation of crude oil-contaminated soil of Kuwait","authors":"Deok Jae Lee, Sung Jong Lee, Guyoung Kang, Minkoo Park, Young Hoon Joo, Jae Ho Yeom, Namhyun Chung","doi":"10.1186/s13765-024-00978-4","DOIUrl":null,"url":null,"abstract":"<div><p>Bioremediation of crude oil-contaminated soil in Kuwait was evaluated using the biowashing pilot reactor system, whose components included 3 biowashing reactors; an oil separator, a hydrocyclone, and a dissolved air flotation. The biowashing pilot reactor system was fed with hemoglobin, a cheap and rich nutrient source containing carbon and nitrogen for bacterial growth. The initial total petroleum hydrocarbons (TPH) concentration was about 84,000 mg/kg soil. The initial TPH concentration decreased to 38,000 mg/kg soil on day 1. The degradation extents of TPH were 55%, 91%, and 96% on days 1, 3, and 5. The first-order rate constant for TPH degradation rate was 0.682±0.0004/day. The initial unresolved complex mixture (UCM) concentration was 78,000 mg/kg soil. The degradation extents of UCM were 53%, 91%, and 98% on days 1, 3, and 5. Then, the degradation extents of individual components of total polycyclic aromatic hydrocarbons (PAH), alkylated PAH, and <i>n</i>-alkanes were measured for 5 days. 16 S rRNA gene copy number was measured during 5 days for bacterial population estimation. Although there was a day delay in the accretion of the number of copies, the number increased from day 2 to day 5. The present study suggests that the biowashing pilot reactor system with a capacity of 200 L is efficient for TPH degradation.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"68 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00978-4","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biological Chemistry","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s13765-024-00978-4","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bioremediation of crude oil-contaminated soil in Kuwait was evaluated using the biowashing pilot reactor system, whose components included 3 biowashing reactors; an oil separator, a hydrocyclone, and a dissolved air flotation. The biowashing pilot reactor system was fed with hemoglobin, a cheap and rich nutrient source containing carbon and nitrogen for bacterial growth. The initial total petroleum hydrocarbons (TPH) concentration was about 84,000 mg/kg soil. The initial TPH concentration decreased to 38,000 mg/kg soil on day 1. The degradation extents of TPH were 55%, 91%, and 96% on days 1, 3, and 5. The first-order rate constant for TPH degradation rate was 0.682±0.0004/day. The initial unresolved complex mixture (UCM) concentration was 78,000 mg/kg soil. The degradation extents of UCM were 53%, 91%, and 98% on days 1, 3, and 5. Then, the degradation extents of individual components of total polycyclic aromatic hydrocarbons (PAH), alkylated PAH, and n-alkanes were measured for 5 days. 16 S rRNA gene copy number was measured during 5 days for bacterial population estimation. Although there was a day delay in the accretion of the number of copies, the number increased from day 2 to day 5. The present study suggests that the biowashing pilot reactor system with a capacity of 200 L is efficient for TPH degradation.
期刊介绍:
Applied Biological Chemistry aims to promote the interchange and dissemination of scientific data among researchers in the field of agricultural and biological chemistry. The journal covers biochemistry and molecular biology, medical and biomaterial science, food science, and environmental science as applied to multidisciplinary agriculture.