Alberto M. Vásquez, Federico A. Nuevo, Aleksandr Burtovoi, Philippe Lamy, Marco Romoli, Hugo Gilardy, Richard A. Frazin, Nishtha Sachdeva, Ward B. Manchester IV, Lucia Abbo, Yara De Leo, Federica Frassati, Giovanna Jerse, Federico Landini, Giuliana Russano, Clementina Sasso, Roberto Susino, Michela Uslenghi
{"title":"Photometric Comparison of Metis and LASCO-C2 Polarized Brightness Images","authors":"Alberto M. Vásquez, Federico A. Nuevo, Aleksandr Burtovoi, Philippe Lamy, Marco Romoli, Hugo Gilardy, Richard A. Frazin, Nishtha Sachdeva, Ward B. Manchester IV, Lucia Abbo, Yara De Leo, Federica Frassati, Giovanna Jerse, Federico Landini, Giuliana Russano, Clementina Sasso, Roberto Susino, Michela Uslenghi","doi":"10.1007/s11207-024-02370-3","DOIUrl":null,"url":null,"abstract":"<div><p>The Metis coronagraph onboard Solar Orbiter and the LASCO-C2 coronagraph onboard SoHO both acquire white light polarized brightness (pB) images of the solar corona. When the Sun–Solar Orbiter distance is less than 0.85 AU, i.e., outside orbital segments around aphelia, the range of elongations covered by the fields-of-view of the two instruments overlap significantly, allowing a quantitative comparison of their images. We report on such a comparison during September 2022, with images taken during a superior conjunction of the two spacecraft with the Sun, as well as close to that event. In each comparison, the two instruments observed the corona from opposite viewpoints, within <span>\\(\\approx 1^{\\circ }\\)</span> in both Carrington longitude and latitude, with Metis at a distance of about half an astronomical unit from the Sun. We find that the Metis measurements are systematically larger than those of LASCO-C2 throughout the corona, with the Metis-to-C2 ratio of pB exhibiting a median value of <span>\\(\\approx 1.6\\)</span>. The discrepancy is observed comparing essentially simultaneous observations, so it cannot be explained as an effect of coronal dynamics. Synthetic images of the solar corona computed from a stationary three-dimensional magneto-hydrodynamic model, replicating the geometry of the observations, are photometrically consistent. This rules out the small departure of the two instruments from observing from opposite viewpoints, or their different distance to the Sun, as the cause of their discrepant measurements. We conclude that the reported discrepancy has its root in the calibration methods of the two instruments, which should be further investigated.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"300 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-024-02370-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Metis coronagraph onboard Solar Orbiter and the LASCO-C2 coronagraph onboard SoHO both acquire white light polarized brightness (pB) images of the solar corona. When the Sun–Solar Orbiter distance is less than 0.85 AU, i.e., outside orbital segments around aphelia, the range of elongations covered by the fields-of-view of the two instruments overlap significantly, allowing a quantitative comparison of their images. We report on such a comparison during September 2022, with images taken during a superior conjunction of the two spacecraft with the Sun, as well as close to that event. In each comparison, the two instruments observed the corona from opposite viewpoints, within \(\approx 1^{\circ }\) in both Carrington longitude and latitude, with Metis at a distance of about half an astronomical unit from the Sun. We find that the Metis measurements are systematically larger than those of LASCO-C2 throughout the corona, with the Metis-to-C2 ratio of pB exhibiting a median value of \(\approx 1.6\). The discrepancy is observed comparing essentially simultaneous observations, so it cannot be explained as an effect of coronal dynamics. Synthetic images of the solar corona computed from a stationary three-dimensional magneto-hydrodynamic model, replicating the geometry of the observations, are photometrically consistent. This rules out the small departure of the two instruments from observing from opposite viewpoints, or their different distance to the Sun, as the cause of their discrepant measurements. We conclude that the reported discrepancy has its root in the calibration methods of the two instruments, which should be further investigated.
期刊介绍:
Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.