Jingyuan Tang, Fengkai Liu, Xi Chen, Zhigang Suo, Jingda Tang
{"title":"Cyclic tearing of a woven fabric embedded in a soft matrix","authors":"Jingyuan Tang, Fengkai Liu, Xi Chen, Zhigang Suo, Jingda Tang","doi":"10.1007/s10704-024-00828-w","DOIUrl":null,"url":null,"abstract":"<div><p>A composite of a woven fabric embedded in a soft matrix exhibits the attributes of both constituents. The fabric is strong in tension but flexible in bending. The soft matrix impedes fluid penetration. Applications of such composites include tents, rain coats, and wound closure patches. How such a composite tears under cyclic load remains unclear. Here we embed a woven fabric of ultrahigh molecular weight polyethylene in a soft matrix of thermoplastic polyurethane, and tear each specimen of the composite with cyclic energy release rate of a fixed amplitude, <i>G</i>. Two thresholds are identified, <i>G</i><sub><i>a</i></sub> and <i>G</i><sub><i>b</i></sub>. When <i>G</i> < <i>G</i><sub><i>a</i></sub>, the composite does not tear. When <i>G</i><sub><i>a</i></sub> < <i>G</i> < <i>G</i><sub><i>b</i></sub>, the composite tears by yarn slip without yarn break, and then tearing arrests after yarns jam. When <i>G</i><sub><i>b</i></sub> < <i>G</i>, the composite tears, without arrest, by a combination of yarn slip and yarn break. We then prepare a composite with strengthened fabric-matrix interface, and find that <i>G</i><sub><i>a</i></sub> increases but <i>G</i><sub><i>b</i></sub> decreases. We interpret these findings in terms of stress deconcentration along the yarns. It is hoped that this study will aid the development of fatigue-resistant composites.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-024-00828-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A composite of a woven fabric embedded in a soft matrix exhibits the attributes of both constituents. The fabric is strong in tension but flexible in bending. The soft matrix impedes fluid penetration. Applications of such composites include tents, rain coats, and wound closure patches. How such a composite tears under cyclic load remains unclear. Here we embed a woven fabric of ultrahigh molecular weight polyethylene in a soft matrix of thermoplastic polyurethane, and tear each specimen of the composite with cyclic energy release rate of a fixed amplitude, G. Two thresholds are identified, Ga and Gb. When G < Ga, the composite does not tear. When Ga < G < Gb, the composite tears by yarn slip without yarn break, and then tearing arrests after yarns jam. When Gb < G, the composite tears, without arrest, by a combination of yarn slip and yarn break. We then prepare a composite with strengthened fabric-matrix interface, and find that Ga increases but Gb decreases. We interpret these findings in terms of stress deconcentration along the yarns. It is hoped that this study will aid the development of fatigue-resistant composites.
期刊介绍:
The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications.
The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged.
In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.